pymc-extras 0.3.1__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. pymc_extras/distributions/__init__.py +5 -5
  2. pymc_extras/distributions/histogram_utils.py +1 -1
  3. pymc_extras/inference/__init__.py +1 -1
  4. pymc_extras/inference/laplace_approx/find_map.py +12 -5
  5. pymc_extras/inference/laplace_approx/idata.py +4 -3
  6. pymc_extras/inference/laplace_approx/laplace.py +6 -4
  7. pymc_extras/inference/pathfinder/pathfinder.py +1 -2
  8. pymc_extras/printing.py +1 -1
  9. pymc_extras/statespace/__init__.py +4 -4
  10. pymc_extras/statespace/core/__init__.py +1 -1
  11. pymc_extras/statespace/core/representation.py +8 -8
  12. pymc_extras/statespace/core/statespace.py +94 -23
  13. pymc_extras/statespace/filters/__init__.py +3 -3
  14. pymc_extras/statespace/filters/kalman_filter.py +16 -11
  15. pymc_extras/statespace/models/SARIMAX.py +138 -74
  16. pymc_extras/statespace/models/VARMAX.py +248 -57
  17. pymc_extras/statespace/models/__init__.py +2 -2
  18. pymc_extras/statespace/models/structural/__init__.py +21 -0
  19. pymc_extras/statespace/models/structural/components/__init__.py +0 -0
  20. pymc_extras/statespace/models/structural/components/autoregressive.py +213 -0
  21. pymc_extras/statespace/models/structural/components/cycle.py +325 -0
  22. pymc_extras/statespace/models/structural/components/level_trend.py +289 -0
  23. pymc_extras/statespace/models/structural/components/measurement_error.py +154 -0
  24. pymc_extras/statespace/models/structural/components/regression.py +257 -0
  25. pymc_extras/statespace/models/structural/components/seasonality.py +628 -0
  26. pymc_extras/statespace/models/structural/core.py +919 -0
  27. pymc_extras/statespace/models/structural/utils.py +16 -0
  28. pymc_extras/statespace/models/utilities.py +285 -0
  29. pymc_extras/statespace/utils/constants.py +21 -18
  30. pymc_extras/statespace/utils/data_tools.py +4 -3
  31. {pymc_extras-0.3.1.dist-info → pymc_extras-0.4.1.dist-info}/METADATA +5 -4
  32. {pymc_extras-0.3.1.dist-info → pymc_extras-0.4.1.dist-info}/RECORD +34 -25
  33. pymc_extras/statespace/models/structural.py +0 -1679
  34. {pymc_extras-0.3.1.dist-info → pymc_extras-0.4.1.dist-info}/WHEEL +0 -0
  35. {pymc_extras-0.3.1.dist-info → pymc_extras-0.4.1.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,325 @@
1
+ import numpy as np
2
+
3
+ from pytensor import tensor as pt
4
+ from pytensor.tensor.slinalg import block_diag
5
+
6
+ from pymc_extras.statespace.models.structural.core import Component
7
+ from pymc_extras.statespace.models.structural.utils import _frequency_transition_block
8
+
9
+
10
+ class CycleComponent(Component):
11
+ r"""
12
+ A component for modeling longer-term cyclical effects
13
+
14
+ Supports both univariate and multivariate time series. For multivariate time series,
15
+ each endogenous variable gets its own independent cycle component with separate
16
+ cosine/sine states and optional variable-specific innovation variances.
17
+
18
+ Parameters
19
+ ----------
20
+ name: str
21
+ Name of the component. Used in generated coordinates and state names. If None, a descriptive name will be
22
+ used.
23
+
24
+ cycle_length: int, optional
25
+ The length of the cycle, in the calendar units of your data. For example, if your data is monthly, and you
26
+ want to model a 12-month cycle, use ``cycle_length=12``. You cannot specify both ``cycle_length`` and
27
+ ``estimate_cycle_length``.
28
+
29
+ estimate_cycle_length: bool, default False
30
+ Whether to estimate the cycle length. If True, an additional parameter, ``cycle_length`` will be added to the
31
+ model. You cannot specify both ``cycle_length`` and ``estimate_cycle_length``.
32
+
33
+ dampen: bool, default False
34
+ Whether to dampen the cycle by multiplying by a dampening factor :math:`\rho` at every timestep. If true,
35
+ an additional parameter, ``dampening_factor`` will be added to the model.
36
+
37
+ innovations: bool, default True
38
+ Whether to include stochastic innovations in the strength of the seasonal effect. If True, an additional
39
+ parameter, ``sigma_{name}`` will be added to the model.
40
+ For multivariate time series, this is a vector (variable-specific innovation variances).
41
+
42
+ observed_state_names: list[str], optional
43
+ Names of the observed state variables. For univariate time series, defaults to ``["data"]``.
44
+ For multivariate time series, specify a list of names for each endogenous variable.
45
+
46
+ share_states: bool, default False
47
+ Whether latent states are shared across the observed states. If True, there will be only one set of latent
48
+ states, which are observed by all observed states. If False, each observed state has its own set of
49
+ latent states. This argument has no effect if `k_endog` is 1.
50
+
51
+ Notes
52
+ -----
53
+ The cycle component is very similar in implementation to the frequency domain seasonal component, expect that it
54
+ is restricted to n=1. The cycle component can be expressed:
55
+
56
+ .. math::
57
+ \begin{align}
58
+ \gamma_t &= \rho \gamma_{t-1} \cos \lambda + \rho \gamma_{t-1}^\star \sin \lambda + \omega_{t} \\
59
+ \gamma_{t}^\star &= -\rho \gamma_{t-1} \sin \lambda + \rho \gamma_{t-1}^\star \cos \lambda + \omega_{t}^\star \\
60
+ \lambda &= \frac{2\pi}{s}
61
+ \end{align}
62
+
63
+ Where :math:`s` is the ``cycle_length``. [1] recommend that this component be used for longer term cyclical
64
+ effects, such as business cycles, and that the seasonal component be used for shorter term effects, such as
65
+ weekly or monthly seasonality.
66
+
67
+ Unlike a FrequencySeasonality component, the length of a CycleComponent can be estimated.
68
+
69
+ **Multivariate Support:**
70
+ For multivariate time series with k endogenous variables, the component creates:
71
+ - 2k states (cosine and sine components for each variable)
72
+ - Block diagonal transition and selection matrices
73
+ - Variable-specific innovation variances (optional)
74
+ - Proper parameter shapes: (k, 2) for initial states, (k,) for innovation variances
75
+
76
+ Examples
77
+ --------
78
+ **Univariate Example:**
79
+ Estimate a business cycle with length between 6 and 12 years:
80
+
81
+ .. code:: python
82
+
83
+ from pymc_extras.statespace import structural as st
84
+ import pymc as pm
85
+ import pytensor.tensor as pt
86
+ import pandas as pd
87
+ import numpy as np
88
+
89
+ data = np.random.normal(size=(100, 1))
90
+
91
+ # Build the structural model
92
+ grw = st.LevelTrendComponent(order=1, innovations_order=1)
93
+ cycle = st.CycleComponent(
94
+ "business_cycle", cycle_length=12, estimate_cycle_length=False, innovations=True, dampen=True
95
+ )
96
+ ss_mod = (grw + cycle).build()
97
+
98
+ # Estimate with PyMC
99
+ with pm.Model(coords=ss_mod.coords) as model:
100
+ P0 = pm.Deterministic('P0', pt.eye(ss_mod.k_states), dims=ss_mod.param_dims['P0'])
101
+
102
+ initial_level_trend = pm.Normal('initial_level_trend', dims=ss_mod.param_dims['initial_level_trend'])
103
+ sigma_level_trend = pm.HalfNormal('sigma_level_trend', dims=ss_mod.param_dims['sigma_level_trend'])
104
+
105
+ business_cycle = pm.Normal("business_cycle", dims=ss_mod.param_dims["business_cycle"])
106
+ dampening = pm.Beta("dampening_factor_business_cycle", 2, 2)
107
+ sigma_cycle = pm.HalfNormal("sigma_business_cycle", sigma=1)
108
+
109
+ ss_mod.build_statespace_graph(data)
110
+ idata = pm.sample(
111
+ nuts_sampler="nutpie", nuts_sampler_kwargs={"backend": "JAX", "gradient_backend": "JAX"}
112
+ )
113
+
114
+ **Multivariate Example:**
115
+ Model cycles for multiple economic indicators with variable-specific innovation variances:
116
+
117
+ .. code:: python
118
+
119
+ # Multivariate cycle component
120
+ cycle = st.CycleComponent(
121
+ name='business_cycle',
122
+ cycle_length=12,
123
+ estimate_cycle_length=False,
124
+ innovations=True,
125
+ dampen=True,
126
+ observed_state_names=['gdp', 'unemployment', 'inflation']
127
+ )
128
+ ss_mod = cycle.build()
129
+
130
+ with pm.Model(coords=ss_mod.coords) as model:
131
+ P0 = pm.Deterministic("P0", pt.eye(ss_mod.k_states), dims=ss_mod.param_dims["P0"])
132
+ # Initial states: shape (3, 2) for 3 variables, 2 states each
133
+ business_cycle = pm.Normal('business_cycle', dims=ss_mod.param_dims["business_cycle"])
134
+
135
+ # Dampening factor: scalar (shared across variables)
136
+ dampening = pm.Beta("dampening_factor_business_cycle", 2, 2)
137
+
138
+ # Innovation variances: shape (3,) for variable-specific variances
139
+ sigma_cycle = pm.HalfNormal(
140
+ "sigma_business_cycle", dims=ss_mod.param_dims["sigma_business_cycle"]
141
+ )
142
+
143
+ ss_mod.build_statespace_graph(data)
144
+ idata = pm.sample(
145
+ nuts_sampler="nutpie", nuts_sampler_kwargs={"backend": "JAX", "gradient_backend": "JAX"}
146
+ )
147
+
148
+ References
149
+ ----------
150
+ .. [1] Durbin, James, and Siem Jan Koopman. 2012.
151
+ Time Series Analysis by State Space Methods: Second Edition.
152
+ Oxford University Press.
153
+ """
154
+
155
+ def __init__(
156
+ self,
157
+ name: str | None = None,
158
+ cycle_length: int | None = None,
159
+ estimate_cycle_length: bool = False,
160
+ dampen: bool = False,
161
+ innovations: bool = True,
162
+ observed_state_names: list[str] | None = None,
163
+ share_states: bool = False,
164
+ ):
165
+ if observed_state_names is None:
166
+ observed_state_names = ["data"]
167
+
168
+ if cycle_length is None and not estimate_cycle_length:
169
+ raise ValueError("Must specify cycle_length if estimate_cycle_length is False")
170
+ if cycle_length is not None and estimate_cycle_length:
171
+ raise ValueError("Cannot specify cycle_length if estimate_cycle_length is True")
172
+ if name is None:
173
+ cycle = int(cycle_length) if cycle_length is not None else "Estimate"
174
+ name = f"Cycle[s={cycle}, dampen={dampen}, innovations={innovations}]"
175
+
176
+ self.share_states = share_states
177
+ self.estimate_cycle_length = estimate_cycle_length
178
+ self.cycle_length = cycle_length
179
+ self.innovations = innovations
180
+ self.dampen = dampen
181
+ self.n_coefs = 1
182
+
183
+ k_endog = len(observed_state_names)
184
+
185
+ k_states = 2 if share_states else 2 * k_endog
186
+ k_posdef = 2 if share_states else 2 * k_endog
187
+
188
+ obs_state_idx = np.zeros(k_states)
189
+ obs_state_idx[slice(0, k_states, 2)] = 1
190
+
191
+ super().__init__(
192
+ name=name,
193
+ k_endog=k_endog,
194
+ k_states=k_states,
195
+ k_posdef=k_posdef,
196
+ measurement_error=False,
197
+ combine_hidden_states=True,
198
+ obs_state_idxs=obs_state_idx,
199
+ observed_state_names=observed_state_names,
200
+ share_states=share_states,
201
+ )
202
+
203
+ def make_symbolic_graph(self) -> None:
204
+ k_endog = self.k_endog
205
+ k_endog_effective = 1 if self.share_states else k_endog
206
+
207
+ Z = np.array([1.0, 0.0]).reshape((1, -1))
208
+ design_matrix = block_diag(*[Z for _ in range(k_endog_effective)])
209
+ self.ssm["design", :, :] = pt.as_tensor_variable(design_matrix)
210
+
211
+ # selection matrix R defines structure of innovations (always identity for cycle components)
212
+ # when innovations=False, state cov Q=0, hence R @ Q @ R.T = 0
213
+ R = np.eye(2) # 2x2 identity for each cycle component
214
+ selection_matrix = block_diag(*[R for _ in range(k_endog_effective)])
215
+ self.ssm["selection", :, :] = pt.as_tensor_variable(selection_matrix)
216
+
217
+ init_state = self.make_and_register_variable(
218
+ f"params_{self.name}",
219
+ shape=(k_endog_effective, 2) if k_endog_effective > 1 else (self.k_states,),
220
+ )
221
+ self.ssm["initial_state", :] = init_state.ravel()
222
+
223
+ if self.estimate_cycle_length:
224
+ lamb = self.make_and_register_variable(f"length_{self.name}", shape=())
225
+ else:
226
+ lamb = self.cycle_length
227
+
228
+ if self.dampen:
229
+ rho = self.make_and_register_variable(f"dampening_factor_{self.name}", shape=())
230
+ else:
231
+ rho = 1
232
+
233
+ T = rho * _frequency_transition_block(lamb, j=1)
234
+ transition = block_diag(*[T for _ in range(k_endog_effective)])
235
+ self.ssm["transition"] = pt.specify_shape(transition, (self.k_states, self.k_states))
236
+
237
+ if self.innovations:
238
+ if k_endog_effective == 1:
239
+ sigma_cycle = self.make_and_register_variable(f"sigma_{self.name}", shape=())
240
+ self.ssm["state_cov", :, :] = pt.eye(self.k_posdef) * sigma_cycle**2
241
+ else:
242
+ sigma_cycle = self.make_and_register_variable(
243
+ f"sigma_{self.name}", shape=(k_endog_effective,)
244
+ )
245
+ state_cov = block_diag(
246
+ *[pt.eye(2) * sigma_cycle[i] ** 2 for i in range(k_endog_effective)]
247
+ )
248
+ self.ssm["state_cov"] = pt.specify_shape(state_cov, (self.k_states, self.k_states))
249
+ else:
250
+ # explicitly set state cov to 0 when no innovations
251
+ self.ssm["state_cov", :, :] = pt.zeros((self.k_posdef, self.k_posdef))
252
+
253
+ def populate_component_properties(self):
254
+ k_endog = self.k_endog
255
+ k_endog_effective = 1 if self.share_states else k_endog
256
+
257
+ base_names = [f"{f}_{self.name}" for f in ["Cos", "Sin"]]
258
+
259
+ if self.share_states:
260
+ self.state_names = [f"{name}[shared]" for name in base_names]
261
+ else:
262
+ self.state_names = [
263
+ f"{name}[{var_name}]" if k_endog_effective > 1 else name
264
+ for var_name in self.observed_state_names
265
+ for name in base_names
266
+ ]
267
+
268
+ self.param_names = [f"params_{self.name}"]
269
+
270
+ if k_endog_effective == 1:
271
+ self.param_dims = {f"params_{self.name}": (f"state_{self.name}",)}
272
+ self.coords = {f"state_{self.name}": base_names}
273
+ self.param_info = {
274
+ f"params_{self.name}": {
275
+ "shape": (2,),
276
+ "constraints": None,
277
+ "dims": (f"state_{self.name}",),
278
+ }
279
+ }
280
+ else:
281
+ self.param_dims = {f"params_{self.name}": (f"endog_{self.name}", f"state_{self.name}")}
282
+ self.coords = {
283
+ f"state_{self.name}": [f"Cos_{self.name}", f"Sin_{self.name}"],
284
+ f"endog_{self.name}": self.observed_state_names,
285
+ }
286
+ self.param_info = {
287
+ f"params_{self.name}": {
288
+ "shape": (k_endog_effective, 2),
289
+ "constraints": None,
290
+ "dims": (f"endog_{self.name}", f"state_{self.name}"),
291
+ }
292
+ }
293
+
294
+ if self.estimate_cycle_length:
295
+ self.param_names += [f"length_{self.name}"]
296
+ self.param_info[f"length_{self.name}"] = {
297
+ "shape": () if k_endog_effective == 1 else (k_endog_effective,),
298
+ "constraints": "Positive, non-zero",
299
+ "dims": None if k_endog_effective == 1 else (f"endog_{self.name}",),
300
+ }
301
+
302
+ if self.dampen:
303
+ self.param_names += [f"dampening_factor_{self.name}"]
304
+ self.param_info[f"dampening_factor_{self.name}"] = {
305
+ "shape": () if k_endog_effective == 1 else (k_endog_effective,),
306
+ "constraints": "0 < x ≤ 1",
307
+ "dims": None if k_endog_effective == 1 else (f"endog_{self.name}",),
308
+ }
309
+
310
+ if self.innovations:
311
+ self.param_names += [f"sigma_{self.name}"]
312
+ if k_endog_effective == 1:
313
+ self.param_info[f"sigma_{self.name}"] = {
314
+ "shape": (),
315
+ "constraints": "Positive",
316
+ "dims": None,
317
+ }
318
+ else:
319
+ self.param_dims[f"sigma_{self.name}"] = (f"endog_{self.name}",)
320
+ self.param_info[f"sigma_{self.name}"] = {
321
+ "shape": (k_endog_effective,),
322
+ "constraints": "Positive",
323
+ "dims": (f"endog_{self.name}",),
324
+ }
325
+ self.shock_names = self.state_names.copy()
@@ -0,0 +1,289 @@
1
+ import numpy as np
2
+ import pytensor.tensor as pt
3
+
4
+ from pymc_extras.statespace.models.structural.core import Component
5
+ from pymc_extras.statespace.models.structural.utils import order_to_mask
6
+ from pymc_extras.statespace.utils.constants import POSITION_DERIVATIVE_NAMES
7
+
8
+
9
+ class LevelTrendComponent(Component):
10
+ r"""
11
+ Level and trend component of a structural time series model
12
+
13
+ Parameters
14
+ ----------
15
+ order : int
16
+ Number of time derivatives of the trend to include in the model. For example, when order=3, the trend will
17
+ be of the form ``y = a + b * t + c * t ** 2``, where the coefficients ``a, b, c`` come from the initial
18
+ state values.
19
+
20
+ innovations_order : int or sequence of int, optional
21
+ The number of stochastic innovations to include in the model. By default, ``innovations_order = order``
22
+
23
+ name : str, default "level_trend"
24
+ A name for this level-trend component. Used to label dimensions and coordinates.
25
+
26
+ observed_state_names : list[str] | None, default None
27
+ List of strings for observed state labels. If None, defaults to ["data"].
28
+
29
+ share_states: bool, default False
30
+ Whether latent states are shared across the observed states. If True, there will be only one set of latent
31
+ states, which are observed by all observed states. If False, each observed state has its own set of
32
+ latent states. This argument has no effect if `k_endog` is 1.
33
+
34
+ Notes
35
+ -----
36
+ This class implements the level and trend components of the general structural time series model. In the most
37
+ general form, the level and trend is described by a system of two time-varying equations.
38
+
39
+ .. math::
40
+ \begin{align}
41
+ \mu_{t+1} &= \mu_t + \nu_t + \zeta_t \\
42
+ \nu_{t+1} &= \nu_t + \xi_t
43
+ \zeta_t &\sim N(0, \sigma_\zeta) \\
44
+ \xi_t &\sim N(0, \sigma_\xi)
45
+ \end{align}
46
+
47
+ Where :math:`\mu_{t+1}` is the mean of the timeseries at time t, and :math:`\nu_t` is the drift or the slope of
48
+ the process. When both innovations :math:`\zeta_t` and :math:`\xi_t` are included in the model, it is known as a
49
+ *local linear trend* model. This system of two equations, corresponding to ``order=2``, can be expanded or
50
+ contracted by adding or removing equations. ``order=3`` would add an acceleration term to the sytsem:
51
+
52
+ .. math::
53
+ \begin{align}
54
+ \mu_{t+1} &= \mu_t + \nu_t + \zeta_t \\
55
+ \nu_{t+1} &= \nu_t + \eta_t + \xi_t \\
56
+ \eta_{t+1} &= \eta_{t-1} + \omega_t \\
57
+ \zeta_t &\sim N(0, \sigma_\zeta) \\
58
+ \xi_t &\sim N(0, \sigma_\xi) \\
59
+ \omega_t &\sim N(0, \sigma_\omega)
60
+ \end{align}
61
+
62
+ After setting all innovation terms to zero and defining initial states :math:`\mu_0, \nu_0, \eta_0`, these equations
63
+ can be collapsed to:
64
+
65
+ .. math::
66
+ \mu_t = \mu_0 + \nu_0 \cdot t + \eta_0 \cdot t^2
67
+
68
+ Which clarifies how the order and initial states influence the model. In particular, the initial states are the
69
+ coefficients on the intercept, slope, acceleration, and so on.
70
+
71
+ In this light, allowing for innovations can be understood as allowing these coefficients to vary over time. Each
72
+ component can be individually selected for time variation by passing a list to the ``innovations_order`` argument.
73
+ For example, a constant intercept with time varying trend and acceleration is specified as ``order=3,
74
+ innovations_order=[0, 1, 1]``.
75
+
76
+ By choosing the ``order`` and ``innovations_order``, a large variety of models can be obtained. Notable
77
+ models include:
78
+
79
+ * Constant intercept, ``order=1, innovations_order=0``
80
+
81
+ .. math::
82
+ \mu_t = \mu
83
+
84
+ * Constant linear slope, ``order=2, innovations_order=0``
85
+
86
+ .. math::
87
+ \mu_t = \mu_{t-1} + \nu
88
+
89
+ * Gaussian Random Walk, ``order=1, innovations_order=1``
90
+
91
+ .. math::
92
+ \mu_t = \mu_{t-1} + \zeta_t
93
+
94
+ * Gaussian Random Walk with Drift, ``order=2, innovations_order=1``
95
+
96
+ .. math::
97
+ \mu_t = \mu_{t-1} + \nu + \zeta_t
98
+
99
+ * Smooth Trend, ``order=2, innovations_order=[0, 1]``
100
+
101
+ .. math::
102
+ \begin{align}
103
+ \mu_t &= \mu_{t-1} + \nu_{t-1} \\
104
+ \nu_t &= \nu_{t-1} + \xi_t
105
+ \end{align}
106
+
107
+ * Local Level, ``order=2, innovations_order=2``
108
+
109
+ [1] notes that the smooth trend model produces more gradually changing slopes than the full local linear trend
110
+ model, and is equivalent to an "integrated trend model".
111
+
112
+ References
113
+ ----------
114
+ .. [1] Durbin, James, and Siem Jan Koopman. 2012.
115
+ Time Series Analysis by State Space Methods: Second Edition.
116
+ Oxford University Press.
117
+
118
+ """
119
+
120
+ def __init__(
121
+ self,
122
+ order: int | list[int] = 2,
123
+ innovations_order: int | list[int] | None = None,
124
+ name: str = "level_trend",
125
+ observed_state_names: list[str] | None = None,
126
+ share_states: bool = False,
127
+ ):
128
+ self.share_states = share_states
129
+
130
+ if innovations_order is None:
131
+ innovations_order = order
132
+
133
+ if observed_state_names is None:
134
+ observed_state_names = ["data"]
135
+ k_endog = len(observed_state_names)
136
+
137
+ self._order_mask = order_to_mask(order)
138
+ max_state = np.flatnonzero(self._order_mask)[-1].item() + 1
139
+
140
+ # If the user passes excess zeros, raise an error. The alternative is to prune them, but this would cause
141
+ # the shape of the state to be different to what the user expects.
142
+ if len(self._order_mask) > max_state:
143
+ raise ValueError(
144
+ f"order={order} is invalid. The highest derivative should not be set to zero. If you want a "
145
+ f"lower order model, explicitly omit the zeros."
146
+ )
147
+ k_states = max_state
148
+
149
+ if isinstance(innovations_order, int):
150
+ n = innovations_order
151
+ innovations_order = order_to_mask(k_states)
152
+ if n > 0:
153
+ innovations_order[n:] = False
154
+ else:
155
+ innovations_order[:] = False
156
+ else:
157
+ innovations_order = order_to_mask(innovations_order)
158
+
159
+ self.innovations_order = innovations_order[:max_state]
160
+ k_posdef = int(sum(innovations_order))
161
+
162
+ super().__init__(
163
+ name,
164
+ k_endog=k_endog,
165
+ k_states=k_states * k_endog if not share_states else k_states,
166
+ k_posdef=k_posdef * k_endog if not share_states else k_posdef,
167
+ observed_state_names=observed_state_names,
168
+ measurement_error=False,
169
+ combine_hidden_states=False,
170
+ obs_state_idxs=np.tile(
171
+ np.array([1.0] + [0.0] * (k_states - 1)), k_endog if not share_states else 1
172
+ ),
173
+ share_states=share_states,
174
+ )
175
+
176
+ def populate_component_properties(self):
177
+ k_endog = self.k_endog
178
+ k_endog_effective = 1 if self.share_states else k_endog
179
+
180
+ k_states = self.k_states // k_endog_effective
181
+ k_posdef = self.k_posdef // k_endog_effective
182
+
183
+ name_slice = POSITION_DERIVATIVE_NAMES[:k_states]
184
+ self.param_names = [f"initial_{self.name}"]
185
+ base_names = [name for name, mask in zip(name_slice, self._order_mask) if mask]
186
+
187
+ if self.share_states:
188
+ self.state_names = [f"{name}[{self.name}_shared]" for name in base_names]
189
+ else:
190
+ self.state_names = [
191
+ f"{name}[{obs_name}]"
192
+ for obs_name in self.observed_state_names
193
+ for name in base_names
194
+ ]
195
+
196
+ self.param_dims = {f"initial_{self.name}": (f"state_{self.name}",)}
197
+ self.coords = {f"state_{self.name}": base_names}
198
+
199
+ if k_endog > 1:
200
+ self.coords[f"endog_{self.name}"] = self.observed_state_names
201
+
202
+ if k_endog_effective > 1:
203
+ self.param_dims[f"state_{self.name}"] = (
204
+ f"endog_{self.name}",
205
+ f"state_{self.name}",
206
+ )
207
+ self.param_dims = {f"initial_{self.name}": (f"endog_{self.name}", f"state_{self.name}")}
208
+
209
+ shape = (k_endog_effective, k_states) if k_endog_effective > 1 else (k_states,)
210
+ self.param_info = {f"initial_{self.name}": {"shape": shape, "constraints": None}}
211
+
212
+ if self.k_posdef > 0:
213
+ self.param_names += [f"sigma_{self.name}"]
214
+
215
+ base_shock_names = [
216
+ name for name, mask in zip(name_slice, self.innovations_order) if mask
217
+ ]
218
+
219
+ if self.share_states:
220
+ self.shock_names = [f"{name}[{self.name}_shared]" for name in base_shock_names]
221
+ else:
222
+ self.shock_names = [
223
+ f"{name}[{obs_name}]"
224
+ for obs_name in self.observed_state_names
225
+ for name in base_shock_names
226
+ ]
227
+
228
+ self.param_dims[f"sigma_{self.name}"] = (
229
+ (f"shock_{self.name}",)
230
+ if k_endog_effective == 1
231
+ else (f"endog_{self.name}", f"shock_{self.name}")
232
+ )
233
+ self.coords[f"shock_{self.name}"] = base_shock_names
234
+ self.param_info[f"sigma_{self.name}"] = {
235
+ "shape": (k_posdef,) if k_endog_effective == 1 else (k_endog_effective, k_posdef),
236
+ "constraints": "Positive",
237
+ }
238
+
239
+ for name in self.param_names:
240
+ self.param_info[name]["dims"] = self.param_dims[name]
241
+
242
+ def make_symbolic_graph(self) -> None:
243
+ k_endog = self.k_endog
244
+ k_endog_effective = 1 if self.share_states else k_endog
245
+
246
+ k_states = self.k_states // k_endog_effective
247
+ k_posdef = self.k_posdef // k_endog_effective
248
+
249
+ initial_trend = self.make_and_register_variable(
250
+ f"initial_{self.name}",
251
+ shape=(k_states,) if k_endog_effective == 1 else (k_endog, k_states),
252
+ )
253
+ self.ssm["initial_state", :] = initial_trend.ravel()
254
+
255
+ triu_idx = pt.triu_indices(k_states)
256
+ T = pt.zeros((k_states, k_states))[triu_idx[0], triu_idx[1]].set(1)
257
+
258
+ self.ssm["transition", :, :] = pt.specify_shape(
259
+ pt.linalg.block_diag(*[T for _ in range(k_endog_effective)]),
260
+ (self.k_states, self.k_states),
261
+ )
262
+
263
+ R = np.eye(k_states)
264
+ R = R[:, self.innovations_order]
265
+
266
+ self.ssm["selection", :, :] = pt.specify_shape(
267
+ pt.linalg.block_diag(*[R for _ in range(k_endog_effective)]),
268
+ (self.k_states, self.k_posdef),
269
+ )
270
+
271
+ Z = np.array([1.0] + [0.0] * (k_states - 1)).reshape((1, -1))
272
+
273
+ if self.share_states:
274
+ self.ssm["design", :, :] = pt.specify_shape(
275
+ pt.join(0, *[Z for _ in range(k_endog)]), (self.k_endog, self.k_states)
276
+ )
277
+ else:
278
+ self.ssm["design", :, :] = pt.specify_shape(
279
+ pt.linalg.block_diag(*[Z for _ in range(k_endog)]), (self.k_endog, self.k_states)
280
+ )
281
+
282
+ if k_posdef > 0:
283
+ sigma_trend = self.make_and_register_variable(
284
+ f"sigma_{self.name}",
285
+ shape=(k_posdef,) if k_endog_effective == 1 else (k_endog, k_posdef),
286
+ )
287
+ diag_idx = np.diag_indices(k_posdef * k_endog_effective)
288
+ idx = np.s_["state_cov", diag_idx[0], diag_idx[1]]
289
+ self.ssm[idx] = (sigma_trend**2).ravel()