pymc-extras 0.3.1__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pymc_extras/inference/laplace_approx/find_map.py +12 -5
- pymc_extras/inference/laplace_approx/idata.py +4 -3
- pymc_extras/inference/laplace_approx/laplace.py +6 -4
- pymc_extras/inference/pathfinder/pathfinder.py +1 -2
- pymc_extras/statespace/models/structural/__init__.py +21 -0
- pymc_extras/statespace/models/structural/components/__init__.py +0 -0
- pymc_extras/statespace/models/structural/components/autoregressive.py +188 -0
- pymc_extras/statespace/models/structural/components/cycle.py +305 -0
- pymc_extras/statespace/models/structural/components/level_trend.py +257 -0
- pymc_extras/statespace/models/structural/components/measurement_error.py +137 -0
- pymc_extras/statespace/models/structural/components/regression.py +228 -0
- pymc_extras/statespace/models/structural/components/seasonality.py +445 -0
- pymc_extras/statespace/models/structural/core.py +900 -0
- pymc_extras/statespace/models/structural/utils.py +16 -0
- pymc_extras/statespace/models/utilities.py +285 -0
- pymc_extras/statespace/utils/constants.py +4 -4
- pymc_extras/statespace/utils/data_tools.py +3 -2
- {pymc_extras-0.3.1.dist-info → pymc_extras-0.4.0.dist-info}/METADATA +5 -4
- {pymc_extras-0.3.1.dist-info → pymc_extras-0.4.0.dist-info}/RECORD +21 -12
- pymc_extras/statespace/models/structural.py +0 -1679
- {pymc_extras-0.3.1.dist-info → pymc_extras-0.4.0.dist-info}/WHEEL +0 -0
- {pymc_extras-0.3.1.dist-info → pymc_extras-0.4.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,445 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
from pytensor import tensor as pt
|
|
4
|
+
|
|
5
|
+
from pymc_extras.statespace.models.structural.core import Component
|
|
6
|
+
from pymc_extras.statespace.models.structural.utils import _frequency_transition_block
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class TimeSeasonality(Component):
|
|
10
|
+
r"""
|
|
11
|
+
Seasonal component, modeled in the time domain
|
|
12
|
+
|
|
13
|
+
Parameters
|
|
14
|
+
----------
|
|
15
|
+
season_length: int
|
|
16
|
+
The number of periods in a single seasonal cycle, e.g. 12 for monthly data with annual seasonal pattern, 7 for
|
|
17
|
+
daily data with weekly seasonal pattern, etc.
|
|
18
|
+
|
|
19
|
+
innovations: bool, default True
|
|
20
|
+
Whether to include stochastic innovations in the strength of the seasonal effect
|
|
21
|
+
|
|
22
|
+
name: str, default None
|
|
23
|
+
A name for this seasonal component. Used to label dimensions and coordinates. Useful when multiple seasonal
|
|
24
|
+
components are included in the same model. Default is ``f"Seasonal[s={season_length}]"``
|
|
25
|
+
|
|
26
|
+
state_names: list of str, default None
|
|
27
|
+
List of strings for seasonal effect labels. If provided, it must be of length ``season_length``. An example
|
|
28
|
+
would be ``state_names = ['Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat', 'Sun']`` when data is daily with a weekly
|
|
29
|
+
seasonal pattern (``season_length = 7``).
|
|
30
|
+
|
|
31
|
+
If None, states will be numbered ``[State_0, ..., State_s]``
|
|
32
|
+
|
|
33
|
+
remove_first_state: bool, default True
|
|
34
|
+
If True, the first state will be removed from the model. This is done because there are only n-1 degrees of
|
|
35
|
+
freedom in the seasonal component, and one state is not identified. If False, the first state will be
|
|
36
|
+
included in the model, but it will not be identified -- you will need to handle this in the priors (e.g. with
|
|
37
|
+
ZeroSumNormal).
|
|
38
|
+
|
|
39
|
+
observed_state_names: list[str] | None, default None
|
|
40
|
+
List of strings for observed state labels. If None, defaults to ["data"].
|
|
41
|
+
|
|
42
|
+
Notes
|
|
43
|
+
-----
|
|
44
|
+
A seasonal effect is any pattern that repeats every fixed interval. Although there are many possible ways to
|
|
45
|
+
model seasonal effects, the implementation used here is the one described by [1] as the "canonical" time domain
|
|
46
|
+
representation. The seasonal component can be expressed:
|
|
47
|
+
|
|
48
|
+
.. math::
|
|
49
|
+
\gamma_t = -\sum_{i=1}^{s-1} \gamma_{t-i} + \omega_t, \quad \omega_t \sim N(0, \sigma_\gamma)
|
|
50
|
+
|
|
51
|
+
Where :math:`s` is the ``seasonal_length`` parameter and :math:`\omega_t` is the (optional) stochastic innovation.
|
|
52
|
+
To give interpretation to the :math:`\gamma` terms, it is helpful to work through the algebra for a simple
|
|
53
|
+
example. Let :math:`s=4`, and omit the shock term. Define initial conditions :math:`\gamma_0, \gamma_{-1},
|
|
54
|
+
\gamma_{-2}`. The value of the seasonal component for the first 5 timesteps will be:
|
|
55
|
+
|
|
56
|
+
.. math::
|
|
57
|
+
\begin{align}
|
|
58
|
+
\gamma_1 &= -\gamma_0 - \gamma_{-1} - \gamma_{-2} \\
|
|
59
|
+
\gamma_2 &= -\gamma_1 - \gamma_0 - \gamma_{-1} \\
|
|
60
|
+
&= -(-\gamma_0 - \gamma_{-1} - \gamma_{-2}) - \gamma_0 - \gamma_{-1} \\
|
|
61
|
+
&= (\gamma_0 - \gamma_0 )+ (\gamma_{-1} - \gamma_{-1}) + \gamma_{-2} \\
|
|
62
|
+
&= \gamma_{-2} \\
|
|
63
|
+
\gamma_3 &= -\gamma_2 - \gamma_1 - \gamma_0 \\
|
|
64
|
+
&= -\gamma_{-2} - (-\gamma_0 - \gamma_{-1} - \gamma_{-2}) - \gamma_0 \\
|
|
65
|
+
&= (\gamma_{-2} - \gamma_{-2}) + \gamma_{-1} + (\gamma_0 - \gamma_0) \\
|
|
66
|
+
&= \gamma_{-1} \\
|
|
67
|
+
\gamma_4 &= -\gamma_3 - \gamma_2 - \gamma_1 \\
|
|
68
|
+
&= -\gamma_{-1} - \gamma_{-2} -(-\gamma_0 - \gamma_{-1} - \gamma_{-2}) \\
|
|
69
|
+
&= (\gamma_{-2} - \gamma_{-2}) + (\gamma_{-1} - \gamma_{-1}) + \gamma_0 \\
|
|
70
|
+
&= \gamma_0 \\
|
|
71
|
+
\gamma_5 &= -\gamma_4 - \gamma_3 - \gamma_2 \\
|
|
72
|
+
&= -\gamma_0 - \gamma_{-1} - \gamma_{-2} \\
|
|
73
|
+
&= \gamma_1
|
|
74
|
+
\end{align}
|
|
75
|
+
|
|
76
|
+
This exercise shows that, given a list ``initial_conditions`` of length ``s-1``, the effects of this model will be:
|
|
77
|
+
|
|
78
|
+
- Period 1: ``-sum(initial_conditions)``
|
|
79
|
+
- Period 2: ``initial_conditions[-1]``
|
|
80
|
+
- Period 3: ``initial_conditions[-2]``
|
|
81
|
+
- ...
|
|
82
|
+
- Period s: ``initial_conditions[0]``
|
|
83
|
+
- Period s+1: ``-sum(initial_condition)``
|
|
84
|
+
|
|
85
|
+
And so on. So for interpretation, the ``season_length - 1`` initial states are, when reversed, the coefficients
|
|
86
|
+
associated with ``state_names[1:]``.
|
|
87
|
+
|
|
88
|
+
.. warning::
|
|
89
|
+
Although the ``state_names`` argument expects a list of length ``season_length``, only ``state_names[1:]``
|
|
90
|
+
will be saved as model dimensions, since the 1st coefficient is not identified (it is defined as
|
|
91
|
+
:math:`-\sum_{i=1}^{s} \gamma_{t-i}`).
|
|
92
|
+
|
|
93
|
+
Examples
|
|
94
|
+
--------
|
|
95
|
+
Estimate monthly with a model with a gaussian random walk trend and monthly seasonality:
|
|
96
|
+
|
|
97
|
+
.. code:: python
|
|
98
|
+
|
|
99
|
+
from pymc_extras.statespace import structural as st
|
|
100
|
+
import pymc as pm
|
|
101
|
+
import pytensor.tensor as pt
|
|
102
|
+
import pandas as pd
|
|
103
|
+
|
|
104
|
+
# Get month names
|
|
105
|
+
state_names = pd.date_range('1900-01-01', '1900-12-31', freq='MS').month_name().tolist()
|
|
106
|
+
|
|
107
|
+
# Build the structural model
|
|
108
|
+
grw = st.LevelTrendComponent(order=1, innovations_order=1)
|
|
109
|
+
annual_season = st.TimeSeasonality(
|
|
110
|
+
season_length=12, name="annual", state_names=state_names, innovations=False
|
|
111
|
+
)
|
|
112
|
+
ss_mod = (grw + annual_season).build()
|
|
113
|
+
|
|
114
|
+
with pm.Model(coords=ss_mod.coords) as model:
|
|
115
|
+
P0 = pm.Deterministic('P0', pt.eye(ss_mod.k_states) * 10, dims=ss_mod.param_dims['P0'])
|
|
116
|
+
|
|
117
|
+
initial_level_trend = pm.Deterministic(
|
|
118
|
+
"initial_level_trend", pt.zeros(1), dims=ss_mod.param_dims["initial_level_trend"]
|
|
119
|
+
)
|
|
120
|
+
sigma_level_trend = pm.HalfNormal(
|
|
121
|
+
"sigma_level_trend", sigma=1e-6, dims=ss_mod.param_dims["sigma_level_trend"]
|
|
122
|
+
)
|
|
123
|
+
coefs_annual = pm.Normal("coefs_annual", sigma=1e-2, dims=ss_mod.param_dims["coefs_annual"])
|
|
124
|
+
|
|
125
|
+
ss_mod.build_statespace_graph(data)
|
|
126
|
+
idata = pm.sample(
|
|
127
|
+
nuts_sampler="nutpie", nuts_sampler_kwargs={"backend": "JAX", "gradient_backend": "JAX"}
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
References
|
|
131
|
+
----------
|
|
132
|
+
.. [1] Durbin, James, and Siem Jan Koopman. 2012.
|
|
133
|
+
Time Series Analysis by State Space Methods: Second Edition.
|
|
134
|
+
Oxford University Press.
|
|
135
|
+
"""
|
|
136
|
+
|
|
137
|
+
def __init__(
|
|
138
|
+
self,
|
|
139
|
+
season_length: int,
|
|
140
|
+
innovations: bool = True,
|
|
141
|
+
name: str | None = None,
|
|
142
|
+
state_names: list | None = None,
|
|
143
|
+
remove_first_state: bool = True,
|
|
144
|
+
observed_state_names: list[str] | None = None,
|
|
145
|
+
):
|
|
146
|
+
if observed_state_names is None:
|
|
147
|
+
observed_state_names = ["data"]
|
|
148
|
+
|
|
149
|
+
if name is None:
|
|
150
|
+
name = f"Seasonal[s={season_length}]"
|
|
151
|
+
if state_names is None:
|
|
152
|
+
state_names = [f"{name}_{i}" for i in range(season_length)]
|
|
153
|
+
else:
|
|
154
|
+
if len(state_names) != season_length:
|
|
155
|
+
raise ValueError(
|
|
156
|
+
f"state_names must be a list of length season_length, got {len(state_names)}"
|
|
157
|
+
)
|
|
158
|
+
state_names = state_names.copy()
|
|
159
|
+
|
|
160
|
+
self.innovations = innovations
|
|
161
|
+
self.remove_first_state = remove_first_state
|
|
162
|
+
|
|
163
|
+
if self.remove_first_state:
|
|
164
|
+
# In traditional models, the first state isn't identified, so we can help out the user by automatically
|
|
165
|
+
# discarding it.
|
|
166
|
+
# TODO: Can this be stashed and reconstructed automatically somehow?
|
|
167
|
+
state_names.pop(0)
|
|
168
|
+
|
|
169
|
+
self.provided_state_names = state_names
|
|
170
|
+
|
|
171
|
+
k_states = season_length - int(self.remove_first_state)
|
|
172
|
+
k_endog = len(observed_state_names)
|
|
173
|
+
k_posdef = int(innovations)
|
|
174
|
+
|
|
175
|
+
super().__init__(
|
|
176
|
+
name=name,
|
|
177
|
+
k_endog=k_endog,
|
|
178
|
+
k_states=k_states * k_endog,
|
|
179
|
+
k_posdef=k_posdef * k_endog,
|
|
180
|
+
observed_state_names=observed_state_names,
|
|
181
|
+
measurement_error=False,
|
|
182
|
+
combine_hidden_states=True,
|
|
183
|
+
obs_state_idxs=np.tile(np.array([1.0] + [0.0] * (k_states - 1)), k_endog),
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
def populate_component_properties(self):
|
|
187
|
+
k_states = self.k_states // self.k_endog
|
|
188
|
+
k_endog = self.k_endog
|
|
189
|
+
|
|
190
|
+
self.state_names = [
|
|
191
|
+
f"{state_name}[{endog_name}]"
|
|
192
|
+
for endog_name in self.observed_state_names
|
|
193
|
+
for state_name in self.provided_state_names
|
|
194
|
+
]
|
|
195
|
+
self.param_names = [f"coefs_{self.name}"]
|
|
196
|
+
|
|
197
|
+
self.param_info = {
|
|
198
|
+
f"coefs_{self.name}": {
|
|
199
|
+
"shape": (k_states,) if k_endog == 1 else (k_endog, k_states),
|
|
200
|
+
"constraints": None,
|
|
201
|
+
"dims": (f"state_{self.name}",)
|
|
202
|
+
if k_endog == 1
|
|
203
|
+
else (f"endog_{self.name}", f"state_{self.name}"),
|
|
204
|
+
}
|
|
205
|
+
}
|
|
206
|
+
|
|
207
|
+
self.param_dims = {
|
|
208
|
+
f"coefs_{self.name}": (f"state_{self.name}",)
|
|
209
|
+
if k_endog == 1
|
|
210
|
+
else (f"endog_{self.name}", f"state_{self.name}")
|
|
211
|
+
}
|
|
212
|
+
|
|
213
|
+
self.coords = (
|
|
214
|
+
{f"state_{self.name}": self.provided_state_names}
|
|
215
|
+
if k_endog == 1
|
|
216
|
+
else {
|
|
217
|
+
f"endog_{self.name}": self.observed_state_names,
|
|
218
|
+
f"state_{self.name}": self.provided_state_names,
|
|
219
|
+
}
|
|
220
|
+
)
|
|
221
|
+
|
|
222
|
+
if self.innovations:
|
|
223
|
+
self.param_names += [f"sigma_{self.name}"]
|
|
224
|
+
self.param_info[f"sigma_{self.name}"] = {
|
|
225
|
+
"shape": (),
|
|
226
|
+
"constraints": "Positive",
|
|
227
|
+
"dims": None,
|
|
228
|
+
}
|
|
229
|
+
self.shock_names = [f"{self.name}[{name}]" for name in self.observed_state_names]
|
|
230
|
+
|
|
231
|
+
def make_symbolic_graph(self) -> None:
|
|
232
|
+
k_states = self.k_states // self.k_endog
|
|
233
|
+
k_posdef = self.k_posdef // self.k_endog
|
|
234
|
+
k_endog = self.k_endog
|
|
235
|
+
|
|
236
|
+
if self.remove_first_state:
|
|
237
|
+
# In this case, parameters are normalized to sum to zero, so the current state is the negative sum of
|
|
238
|
+
# all previous states.
|
|
239
|
+
T = np.eye(k_states, k=-1)
|
|
240
|
+
T[0, :] = -1
|
|
241
|
+
else:
|
|
242
|
+
# In this case we assume the user to be responsible for ensuring the states sum to zero, so T is just a
|
|
243
|
+
# circulant matrix that cycles between the states.
|
|
244
|
+
T = np.eye(k_states, k=1)
|
|
245
|
+
T[-1, 0] = 1
|
|
246
|
+
|
|
247
|
+
self.ssm["transition", :, :] = pt.linalg.block_diag(*[T for _ in range(k_endog)])
|
|
248
|
+
|
|
249
|
+
Z = pt.zeros((1, k_states))[0, 0].set(1)
|
|
250
|
+
self.ssm["design", :, :] = pt.linalg.block_diag(*[Z for _ in range(k_endog)])
|
|
251
|
+
|
|
252
|
+
initial_states = self.make_and_register_variable(
|
|
253
|
+
f"coefs_{self.name}", shape=(k_states,) if k_endog == 1 else (k_endog, k_states)
|
|
254
|
+
)
|
|
255
|
+
self.ssm["initial_state", :] = initial_states.ravel()
|
|
256
|
+
|
|
257
|
+
if self.innovations:
|
|
258
|
+
R = pt.zeros((k_states, k_posdef))[0, 0].set(1.0)
|
|
259
|
+
self.ssm["selection", :, :] = pt.join(0, *[R for _ in range(k_endog)])
|
|
260
|
+
season_sigma = self.make_and_register_variable(
|
|
261
|
+
f"sigma_{self.name}", shape=() if k_endog == 1 else (k_endog,)
|
|
262
|
+
)
|
|
263
|
+
cov_idx = ("state_cov", *np.diag_indices(k_posdef * k_endog))
|
|
264
|
+
self.ssm[cov_idx] = season_sigma**2
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
class FrequencySeasonality(Component):
|
|
268
|
+
r"""
|
|
269
|
+
Seasonal component, modeled in the frequency domain
|
|
270
|
+
|
|
271
|
+
Parameters
|
|
272
|
+
----------
|
|
273
|
+
season_length: float
|
|
274
|
+
The number of periods in a single seasonal cycle, e.g. 12 for monthly data with annual seasonal pattern, 7 for
|
|
275
|
+
daily data with weekly seasonal pattern, etc. Non-integer seasonal_length is also permitted, for example
|
|
276
|
+
365.2422 days in a (solar) year.
|
|
277
|
+
|
|
278
|
+
n: int
|
|
279
|
+
Number of fourier features to include in the seasonal component. Default is ``season_length // 2``, which
|
|
280
|
+
is the maximum possible. A smaller number can be used for a more wave-like seasonal pattern.
|
|
281
|
+
|
|
282
|
+
name: str, default None
|
|
283
|
+
A name for this seasonal component. Used to label dimensions and coordinates. Useful when multiple seasonal
|
|
284
|
+
components are included in the same model. Default is ``f"Seasonal[s={season_length}, n={n}]"``
|
|
285
|
+
|
|
286
|
+
innovations: bool, default True
|
|
287
|
+
Whether to include stochastic innovations in the strength of the seasonal effect
|
|
288
|
+
|
|
289
|
+
observed_state_names: list[str] | None, default None
|
|
290
|
+
List of strings for observed state labels. If None, defaults to ["data"].
|
|
291
|
+
|
|
292
|
+
Notes
|
|
293
|
+
-----
|
|
294
|
+
A seasonal effect is any pattern that repeats every fixed interval. Although there are many possible ways to
|
|
295
|
+
model seasonal effects, the implementation used here is the one described by [1] as the "canonical" frequency domain
|
|
296
|
+
representation. The seasonal component can be expressed:
|
|
297
|
+
|
|
298
|
+
.. math::
|
|
299
|
+
\begin{align}
|
|
300
|
+
\gamma_t &= \sum_{j=1}^{2n} \gamma_{j,t} \\
|
|
301
|
+
\gamma_{j, t+1} &= \gamma_{j,t} \cos \lambda_j + \gamma_{j,t}^\star \sin \lambda_j + \omega_{j, t} \\
|
|
302
|
+
\gamma_{j, t}^\star &= -\gamma_{j,t} \sin \lambda_j + \gamma_{j,t}^\star \cos \lambda_j + \omega_{j,t}^\star
|
|
303
|
+
\lambda_j &= \frac{2\pi j}{s}
|
|
304
|
+
\end{align}
|
|
305
|
+
|
|
306
|
+
Where :math:`s` is the ``seasonal_length``.
|
|
307
|
+
|
|
308
|
+
Unlike a ``TimeSeasonality`` component, a ``FrequencySeasonality`` component does not require integer season
|
|
309
|
+
length. In addition, for long seasonal periods, it is possible to obtain a more compact state space representation
|
|
310
|
+
by choosing ``n << s // 2``. Using ``TimeSeasonality``, an annual seasonal pattern in daily data requires 364
|
|
311
|
+
states, whereas ``FrequencySeasonality`` always requires ``2 * n`` states, regardless of the ``seasonal_length``.
|
|
312
|
+
The price of this compactness is less representational power. At ``n = 1``, the seasonal pattern will be a pure
|
|
313
|
+
sine wave. At ``n = s // 2``, any arbitrary pattern can be represented.
|
|
314
|
+
|
|
315
|
+
One cost of the added flexibility of ``FrequencySeasonality`` is reduced interpretability. States of this model are
|
|
316
|
+
coefficients :math:`\gamma_1, \gamma^\star_1, \gamma_2, \gamma_2^\star ..., \gamma_n, \gamma^\star_n` associated
|
|
317
|
+
with different frequencies in the fourier representation of the seasonal pattern. As a result, it is not possible
|
|
318
|
+
to isolate and identify a "Monday" effect, for instance.
|
|
319
|
+
"""
|
|
320
|
+
|
|
321
|
+
def __init__(
|
|
322
|
+
self,
|
|
323
|
+
season_length,
|
|
324
|
+
n=None,
|
|
325
|
+
name=None,
|
|
326
|
+
innovations=True,
|
|
327
|
+
observed_state_names: list[str] | None = None,
|
|
328
|
+
):
|
|
329
|
+
if observed_state_names is None:
|
|
330
|
+
observed_state_names = ["data"]
|
|
331
|
+
|
|
332
|
+
k_endog = len(observed_state_names)
|
|
333
|
+
|
|
334
|
+
if n is None:
|
|
335
|
+
n = int(season_length / 2)
|
|
336
|
+
if name is None:
|
|
337
|
+
name = f"Frequency[s={season_length}, n={n}]"
|
|
338
|
+
|
|
339
|
+
k_states = n * 2
|
|
340
|
+
self.n = n
|
|
341
|
+
self.season_length = season_length
|
|
342
|
+
self.innovations = innovations
|
|
343
|
+
|
|
344
|
+
# If the model is completely saturated (n = s // 2), the last state will not be identified, so it shouldn't
|
|
345
|
+
# get a parameter assigned to it and should just be fixed to zero.
|
|
346
|
+
# Test this way (rather than n == s // 2) to catch cases when n is non-integer.
|
|
347
|
+
self.last_state_not_identified = self.season_length / self.n == 2.0
|
|
348
|
+
self.n_coefs = k_states - int(self.last_state_not_identified)
|
|
349
|
+
|
|
350
|
+
obs_state_idx = np.zeros(k_states)
|
|
351
|
+
obs_state_idx[slice(0, k_states, 2)] = 1
|
|
352
|
+
obs_state_idx = np.tile(obs_state_idx, k_endog)
|
|
353
|
+
|
|
354
|
+
super().__init__(
|
|
355
|
+
name=name,
|
|
356
|
+
k_endog=k_endog,
|
|
357
|
+
k_states=k_states * k_endog,
|
|
358
|
+
k_posdef=k_states * int(self.innovations) * k_endog,
|
|
359
|
+
observed_state_names=observed_state_names,
|
|
360
|
+
measurement_error=False,
|
|
361
|
+
combine_hidden_states=True,
|
|
362
|
+
obs_state_idxs=obs_state_idx,
|
|
363
|
+
)
|
|
364
|
+
|
|
365
|
+
def make_symbolic_graph(self) -> None:
|
|
366
|
+
k_endog = self.k_endog
|
|
367
|
+
k_states = self.k_states // k_endog
|
|
368
|
+
k_posdef = self.k_posdef // k_endog
|
|
369
|
+
n_coefs = self.n_coefs
|
|
370
|
+
|
|
371
|
+
Z = pt.zeros((1, k_states))[0, slice(0, k_states, 2)].set(1.0)
|
|
372
|
+
|
|
373
|
+
self.ssm["design", :, :] = pt.linalg.block_diag(*[Z for _ in range(k_endog)])
|
|
374
|
+
|
|
375
|
+
init_state = self.make_and_register_variable(
|
|
376
|
+
f"{self.name}", shape=(n_coefs,) if k_endog == 1 else (k_endog, n_coefs)
|
|
377
|
+
)
|
|
378
|
+
|
|
379
|
+
init_state_idx = np.concatenate(
|
|
380
|
+
[
|
|
381
|
+
np.arange(k_states * i, (i + 1) * k_states, dtype=int)[:n_coefs]
|
|
382
|
+
for i in range(k_endog)
|
|
383
|
+
],
|
|
384
|
+
axis=0,
|
|
385
|
+
)
|
|
386
|
+
|
|
387
|
+
self.ssm["initial_state", init_state_idx] = init_state.ravel()
|
|
388
|
+
|
|
389
|
+
T_mats = [_frequency_transition_block(self.season_length, j + 1) for j in range(self.n)]
|
|
390
|
+
T = pt.linalg.block_diag(*T_mats)
|
|
391
|
+
self.ssm["transition", :, :] = pt.linalg.block_diag(*[T for _ in range(k_endog)])
|
|
392
|
+
|
|
393
|
+
if self.innovations:
|
|
394
|
+
sigma_season = self.make_and_register_variable(
|
|
395
|
+
f"sigma_{self.name}", shape=() if k_endog == 1 else (k_endog,)
|
|
396
|
+
)
|
|
397
|
+
self.ssm["selection", :, :] = pt.eye(self.k_states)
|
|
398
|
+
self.ssm["state_cov", :, :] = pt.eye(self.k_posdef) * pt.repeat(
|
|
399
|
+
sigma_season**2, k_posdef
|
|
400
|
+
)
|
|
401
|
+
|
|
402
|
+
def populate_component_properties(self):
|
|
403
|
+
k_endog = self.k_endog
|
|
404
|
+
n_coefs = self.n_coefs
|
|
405
|
+
k_states = self.k_states // k_endog
|
|
406
|
+
|
|
407
|
+
self.state_names = [
|
|
408
|
+
f"{f}_{self.name}_{i}[{obs_state_name}]"
|
|
409
|
+
for obs_state_name in self.observed_state_names
|
|
410
|
+
for i in range(self.n)
|
|
411
|
+
for f in ["Cos", "Sin"]
|
|
412
|
+
]
|
|
413
|
+
self.param_names = [f"{self.name}"]
|
|
414
|
+
|
|
415
|
+
self.param_dims = {self.name: (f"state_{self.name}",)}
|
|
416
|
+
self.param_info = {
|
|
417
|
+
f"{self.name}": {
|
|
418
|
+
"shape": (n_coefs,) if k_endog == 1 else (k_endog, n_coefs),
|
|
419
|
+
"constraints": None,
|
|
420
|
+
"dims": (f"state_{self.name}",)
|
|
421
|
+
if k_endog == 1
|
|
422
|
+
else (f"endog_{self.name}", f"state_{self.name}"),
|
|
423
|
+
}
|
|
424
|
+
}
|
|
425
|
+
|
|
426
|
+
# Regardless of whether the fourier basis are saturated, there will always be one symbolic state per basis.
|
|
427
|
+
# That's why the self.states is just a simple loop over everything. But when saturated, one of those states
|
|
428
|
+
# doesn't have an associated **parameter**, so the coords need to be adjusted to reflect this.
|
|
429
|
+
init_state_idx = np.concatenate(
|
|
430
|
+
[
|
|
431
|
+
np.arange(k_states * i, (i + 1) * k_states, dtype=int)[:n_coefs]
|
|
432
|
+
for i in range(k_endog)
|
|
433
|
+
],
|
|
434
|
+
axis=0,
|
|
435
|
+
)
|
|
436
|
+
self.coords = {f"state_{self.name}": [self.state_names[i] for i in init_state_idx]}
|
|
437
|
+
|
|
438
|
+
if self.innovations:
|
|
439
|
+
self.shock_names = self.state_names.copy()
|
|
440
|
+
self.param_names += [f"sigma_{self.name}"]
|
|
441
|
+
self.param_info[f"sigma_{self.name}"] = {
|
|
442
|
+
"shape": () if k_endog == 1 else (k_endog, n_coefs),
|
|
443
|
+
"constraints": "Positive",
|
|
444
|
+
"dims": None if k_endog == 1 else (f"endog_{self.name}",),
|
|
445
|
+
}
|