pymast 0.0.2__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pymast/formatter.py CHANGED
@@ -43,15 +43,19 @@ class cjs_data_prep():
43
43
  query_parts.append(f"rec_id == '{key}'")
44
44
  qry = " & ".join(query_parts)
45
45
 
46
- recap_data = pd.read_hdf(project.db,
47
- 'recaptures',
48
- where = qry)
46
+ self.recap_data = pd.read_hdf(project.db,
47
+ 'recaptures')#,
48
+ #where = qry)
49
49
 
50
- self.recap_data.set_index('freq_code', inplace = True)
51
- project.tags.set_index('freq_code', inplace = True)
52
- self.recap_data = pd.merge(recap_data, project.tags, how = 'left')
50
+ #self.recap_data.set_index('freq_code', inplace = True)
51
+ project.tags.reset_index('freq_code', inplace = True)
52
+ self.recap_data = pd.merge(self.recap_data,
53
+ project.tags,
54
+ left_on = 'freq_code',
55
+ right_on = 'freq_code',
56
+ how = 'left')
53
57
  self.recap_data.reset_index(drop = False, inplace = True)
54
- project.tags.reset_index(drop = False, inplace = True)
58
+ #project.tags.reset_index(drop = False, inplace = True)
55
59
 
56
60
  # filter out tag data we don't want mucking up our staistical model
57
61
  if species != None:
@@ -102,7 +106,7 @@ class cjs_data_prep():
102
106
 
103
107
  if fish not in start_times.index.values:
104
108
  # fish never made it to the initial state
105
- self.recap_dat.drop(self.recap_dat[self.recap_data.freq_code == fish].index, inplace = True)
109
+ self.recap_data.drop(self.recap_data[self.recap_data.freq_code == fish].index, inplace = True)
106
110
  else:
107
111
  # fish arrived at the initial state but their may be recaptures before arrival at initial state
108
112
  t = start_times.at[fish,'first_recapture']
pymast/parsers.py CHANGED
@@ -79,7 +79,7 @@ def ares(file_name,
79
79
 
80
80
  telem_dat = telem_dat.astype({'power':'float32',
81
81
  'freq_code':'object',
82
- 'time_stamp':'datetime64',
82
+ 'time_stamp':'datetime64[ns]',
83
83
  'scan_time':'float32',
84
84
  'channels':'int32',
85
85
  'rec_type':'object',
@@ -175,7 +175,7 @@ def orion_import(file_name,
175
175
 
176
176
  telem_dat = telem_dat.astype({'power':'float32',
177
177
  'freq_code':'object',
178
- 'time_stamp':'datetime64',
178
+ 'time_stamp':'datetime64[ns]',
179
179
  'scan_time':'float32',
180
180
  'channels':'int32',
181
181
  'rec_type':'object',
@@ -293,7 +293,7 @@ def vr2_import(file_name,db_dir,study_tags, rec_id):
293
293
 
294
294
  telem_dat = telem_dat.astype({'power':'float32',
295
295
  'freq_code':'object',
296
- 'time_stamp':'datetime64',
296
+ 'time_stamp':'datetime64[ns]',
297
297
  'scan_time':'float32',
298
298
  'channels':'int32',
299
299
  'rec_type':'object',
@@ -495,7 +495,7 @@ def srx1200(file_name,
495
495
  # format frequency code
496
496
  telem_dat['FreqNo'] = telem_dat['Freq [MHz]'].apply(lambda x: f"{x:.3f}" )
497
497
  telem_dat = telem_dat[telem_dat['Tag/BPM'] != 999]
498
- telem_dat['freq_code'] = telem_dat['FreqNo'] + ' ' + telem_dat['Tag/BPM'].astype(np.str)
498
+ telem_dat['freq_code'] = telem_dat['FreqNo'] + ' ' + telem_dat['Tag/BPM'].astype(str)
499
499
 
500
500
  # calculate
501
501
  telem_dat['noise_ratio'] = predictors.noise_ratio(600,
@@ -520,7 +520,7 @@ def srx1200(file_name,
520
520
 
521
521
  telem_dat = telem_dat.astype({'power':'float32',
522
522
  'freq_code':'object',
523
- 'time_stamp':'datetime64',
523
+ 'time_stamp':'datetime64[ns]',
524
524
  'scan_time':'int32',
525
525
  'channels':'int32',
526
526
  'rec_type':'object',
@@ -572,7 +572,7 @@ def srx1200(file_name,
572
572
  telem_dat['FreqNo'] = telem_dat['Freq [MHz]'].apply(lambda x: f"{x:.3f}" )
573
573
  telem_dat = telem_dat[telem_dat['TagID/BPM'] != 999]
574
574
 
575
- telem_dat['freq_code'] = telem_dat['FreqNo'] + ' ' + telem_dat['TagID/BPM'].astype(np.str)
575
+ telem_dat['freq_code'] = telem_dat['FreqNo'] + ' ' + telem_dat['TagID/BPM'].astype(str)
576
576
 
577
577
  # calculate
578
578
  telem_dat['noise_ratio'] = predictors.noise_ratio(600,
@@ -596,7 +596,7 @@ def srx1200(file_name,
596
596
 
597
597
  telem_dat = telem_dat.astype({'power':'float32',
598
598
  'freq_code':'object',
599
- 'time_stamp':'datetime64',
599
+ 'time_stamp':'datetime64[ns]',
600
600
  'scan_time':'float32',
601
601
  'channels':'int32',
602
602
  'rec_type':'object',
@@ -741,7 +741,7 @@ def srx800(file_name,
741
741
  split = setup_df['change_date'].str.split(' ', expand=True)
742
742
  setup_df['day0'] = np.repeat(pd.to_datetime("1900-01-01"),len(setup_df))
743
743
  setup_df['Date'] = setup_df['day0'] + pd.to_timedelta(split[1].astype(int), unit='d')
744
- setup_df['change_date'] = setup_df.Date.astype(np.str) + ' ' + split[2]
744
+ setup_df['change_date'] = setup_df.Date.astype(str) + ' ' + split[2]
745
745
 
746
746
 
747
747
  setup_df['change_date'] = pd.to_datetime(setup_df.change_date)
@@ -1129,7 +1129,7 @@ def srx600(file_name,
1129
1129
 
1130
1130
  telem_dat_sub = telem_dat_sub.astype({'power':'float32',
1131
1131
  'freq_code':'object',
1132
- 'time_stamp':'datetime64',
1132
+ 'time_stamp':'datetime64[ns]',
1133
1133
  'scan_time':'float32',
1134
1134
  'channels':'int32',
1135
1135
  'rec_type':'object',
@@ -1204,7 +1204,7 @@ def srx600(file_name,
1204
1204
 
1205
1205
  telem_dat_sub = telem_dat_sub.astype({'power':'float32',
1206
1206
  'freq_code':'object',
1207
- 'time_stamp':'datetime64',
1207
+ 'time_stamp':'datetime64[ns]',
1208
1208
  'scan_time':'float32',
1209
1209
  'channels':'int32',
1210
1210
  'rec_type':'object',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pymast
3
- Version: 0.0.2
3
+ Version: 0.0.4
4
4
  Summary: Movement Analysis Software for Telemetry (MAST) for
5
5
  Home-page: https://github.com/knebiolo/mast
6
6
  Author: Kevin P. Nebiolo and Theodore Castro-Santos
@@ -1,14 +1,14 @@
1
1
  pymast/__init__.py,sha256=lvDHHvhI7UL2F5QLDU_2b62OUnRTlhybslr6aTn27Z0,538
2
2
  pymast/fish_history.py,sha256=XaubGDRLfR89v2rIrFvkf7AKOLMTA5z--KyCJoXqnv4,6822
3
- pymast/formatter.py,sha256=g_s22BGWUsJ1Qc0qHg4pqQiNeGJpuCrvGqbwTujMRFk,58342
3
+ pymast/formatter.py,sha256=Iq0VYtA-U7j7z7e-5H1OfRd0uP5dod2ptOKs2GK8hlc,58555
4
4
  pymast/naive_bayes.py,sha256=pjB8LSIFM8-fW7sohy5gCuFgKk1VP5yh63raMp9mdEU,6475
5
5
  pymast/overlap_removal.py,sha256=4SwP8qZDqEYZ6_I0xGlI6647bTt45EaGDP5FxbqddZo,25416
6
- pymast/parsers.py,sha256=GVVceEI06Q_vnAj46z0jvclfh-f0CCL-FhmsgupVESw,59229
6
+ pymast/parsers.py,sha256=b5H_a6tv0RxlNe_NhdnjJilA30Uo9kDq8w8WGP6bT8s,59248
7
7
  pymast/predictors.py,sha256=VEWnhxgJcbnag8h6DNpWbeWgGiK9YyV_3N4xkcJFjdo,8018
8
8
  pymast/radio_project.py,sha256=QT9l_qyZTKWqTu55kpgIESPDR1dnjajEQlUBYSg0H8Q,55502
9
9
  pymast/table_merge.py,sha256=7_z4F_q3DW3RFXruRH6Qanum7E5QQQnu_w6qyyW-YVc,7921
10
- pymast-0.0.2.dist-info/LICENSE.txt,sha256=CX_nvzXXwOA7SPq4-ivN4Q9NIK2PfK-KGHt3ZQKldsw,1143
11
- pymast-0.0.2.dist-info/METADATA,sha256=DebVi6GPuHnPnZFh8ON7owuFkWSxgQ0V9qM0c19HgQ0,572
12
- pymast-0.0.2.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
13
- pymast-0.0.2.dist-info/top_level.txt,sha256=LDZpLLge9zI4yvuMYoABLrsOrZzE3bYDRULmHoZQc4k,7
14
- pymast-0.0.2.dist-info/RECORD,,
10
+ pymast-0.0.4.dist-info/LICENSE.txt,sha256=CX_nvzXXwOA7SPq4-ivN4Q9NIK2PfK-KGHt3ZQKldsw,1143
11
+ pymast-0.0.4.dist-info/METADATA,sha256=PjJdlBD-1796BS2I3ahM4_nvsNqXcjBs4ezgidA7EkQ,572
12
+ pymast-0.0.4.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
13
+ pymast-0.0.4.dist-info/top_level.txt,sha256=LDZpLLge9zI4yvuMYoABLrsOrZzE3bYDRULmHoZQc4k,7
14
+ pymast-0.0.4.dist-info/RECORD,,
File without changes