pylibsparseir 0.1.0__cp312-cp312-macosx_15_0_arm64.whl → 0.5.2__cp312-cp312-macosx_15_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pylibsparseir might be problematic. Click here for more details.
- include/eigen3/Eigen/Cholesky +45 -0
- include/eigen3/Eigen/CholmodSupport +48 -0
- include/eigen3/Eigen/Core +384 -0
- include/eigen3/Eigen/Dense +7 -0
- include/eigen3/Eigen/Eigen +2 -0
- include/eigen3/Eigen/Eigenvalues +60 -0
- include/eigen3/Eigen/Geometry +59 -0
- include/eigen3/Eigen/Householder +29 -0
- include/eigen3/Eigen/IterativeLinearSolvers +48 -0
- include/eigen3/Eigen/Jacobi +32 -0
- include/eigen3/Eigen/KLUSupport +41 -0
- include/eigen3/Eigen/LU +47 -0
- include/eigen3/Eigen/MetisSupport +35 -0
- include/eigen3/Eigen/OrderingMethods +70 -0
- include/eigen3/Eigen/PaStiXSupport +49 -0
- include/eigen3/Eigen/PardisoSupport +35 -0
- include/eigen3/Eigen/QR +50 -0
- include/eigen3/Eigen/QtAlignedMalloc +39 -0
- include/eigen3/Eigen/SPQRSupport +34 -0
- include/eigen3/Eigen/SVD +50 -0
- include/eigen3/Eigen/Sparse +34 -0
- include/eigen3/Eigen/SparseCholesky +37 -0
- include/eigen3/Eigen/SparseCore +69 -0
- include/eigen3/Eigen/SparseLU +50 -0
- include/eigen3/Eigen/SparseQR +36 -0
- include/eigen3/Eigen/StdDeque +27 -0
- include/eigen3/Eigen/StdList +26 -0
- include/eigen3/Eigen/StdVector +27 -0
- include/eigen3/Eigen/SuperLUSupport +64 -0
- include/eigen3/Eigen/UmfPackSupport +40 -0
- include/eigen3/Eigen/src/Cholesky/LDLT.h +688 -0
- include/eigen3/Eigen/src/Cholesky/LLT.h +558 -0
- include/eigen3/Eigen/src/Cholesky/LLT_LAPACKE.h +99 -0
- include/eigen3/Eigen/src/CholmodSupport/CholmodSupport.h +682 -0
- include/eigen3/Eigen/src/Core/ArithmeticSequence.h +413 -0
- include/eigen3/Eigen/src/Core/Array.h +417 -0
- include/eigen3/Eigen/src/Core/ArrayBase.h +226 -0
- include/eigen3/Eigen/src/Core/ArrayWrapper.h +209 -0
- include/eigen3/Eigen/src/Core/Assign.h +90 -0
- include/eigen3/Eigen/src/Core/AssignEvaluator.h +1010 -0
- include/eigen3/Eigen/src/Core/Assign_MKL.h +178 -0
- include/eigen3/Eigen/src/Core/BandMatrix.h +353 -0
- include/eigen3/Eigen/src/Core/Block.h +448 -0
- include/eigen3/Eigen/src/Core/BooleanRedux.h +162 -0
- include/eigen3/Eigen/src/Core/CommaInitializer.h +164 -0
- include/eigen3/Eigen/src/Core/ConditionEstimator.h +175 -0
- include/eigen3/Eigen/src/Core/CoreEvaluators.h +1741 -0
- include/eigen3/Eigen/src/Core/CoreIterators.h +132 -0
- include/eigen3/Eigen/src/Core/CwiseBinaryOp.h +183 -0
- include/eigen3/Eigen/src/Core/CwiseNullaryOp.h +1001 -0
- include/eigen3/Eigen/src/Core/CwiseTernaryOp.h +197 -0
- include/eigen3/Eigen/src/Core/CwiseUnaryOp.h +103 -0
- include/eigen3/Eigen/src/Core/CwiseUnaryView.h +132 -0
- include/eigen3/Eigen/src/Core/DenseBase.h +701 -0
- include/eigen3/Eigen/src/Core/DenseCoeffsBase.h +685 -0
- include/eigen3/Eigen/src/Core/DenseStorage.h +652 -0
- include/eigen3/Eigen/src/Core/Diagonal.h +258 -0
- include/eigen3/Eigen/src/Core/DiagonalMatrix.h +391 -0
- include/eigen3/Eigen/src/Core/DiagonalProduct.h +28 -0
- include/eigen3/Eigen/src/Core/Dot.h +318 -0
- include/eigen3/Eigen/src/Core/EigenBase.h +160 -0
- include/eigen3/Eigen/src/Core/ForceAlignedAccess.h +150 -0
- include/eigen3/Eigen/src/Core/Fuzzy.h +155 -0
- include/eigen3/Eigen/src/Core/GeneralProduct.h +465 -0
- include/eigen3/Eigen/src/Core/GenericPacketMath.h +1040 -0
- include/eigen3/Eigen/src/Core/GlobalFunctions.h +194 -0
- include/eigen3/Eigen/src/Core/IO.h +258 -0
- include/eigen3/Eigen/src/Core/IndexedView.h +237 -0
- include/eigen3/Eigen/src/Core/Inverse.h +117 -0
- include/eigen3/Eigen/src/Core/Map.h +171 -0
- include/eigen3/Eigen/src/Core/MapBase.h +310 -0
- include/eigen3/Eigen/src/Core/MathFunctions.h +2057 -0
- include/eigen3/Eigen/src/Core/MathFunctionsImpl.h +200 -0
- include/eigen3/Eigen/src/Core/Matrix.h +565 -0
- include/eigen3/Eigen/src/Core/MatrixBase.h +547 -0
- include/eigen3/Eigen/src/Core/NestByValue.h +85 -0
- include/eigen3/Eigen/src/Core/NoAlias.h +109 -0
- include/eigen3/Eigen/src/Core/NumTraits.h +335 -0
- include/eigen3/Eigen/src/Core/PartialReduxEvaluator.h +232 -0
- include/eigen3/Eigen/src/Core/PermutationMatrix.h +605 -0
- include/eigen3/Eigen/src/Core/PlainObjectBase.h +1128 -0
- include/eigen3/Eigen/src/Core/Product.h +191 -0
- include/eigen3/Eigen/src/Core/ProductEvaluators.h +1179 -0
- include/eigen3/Eigen/src/Core/Random.h +218 -0
- include/eigen3/Eigen/src/Core/Redux.h +515 -0
- include/eigen3/Eigen/src/Core/Ref.h +381 -0
- include/eigen3/Eigen/src/Core/Replicate.h +142 -0
- include/eigen3/Eigen/src/Core/Reshaped.h +454 -0
- include/eigen3/Eigen/src/Core/ReturnByValue.h +119 -0
- include/eigen3/Eigen/src/Core/Reverse.h +217 -0
- include/eigen3/Eigen/src/Core/Select.h +164 -0
- include/eigen3/Eigen/src/Core/SelfAdjointView.h +365 -0
- include/eigen3/Eigen/src/Core/SelfCwiseBinaryOp.h +47 -0
- include/eigen3/Eigen/src/Core/Solve.h +188 -0
- include/eigen3/Eigen/src/Core/SolveTriangular.h +235 -0
- include/eigen3/Eigen/src/Core/SolverBase.h +168 -0
- include/eigen3/Eigen/src/Core/StableNorm.h +251 -0
- include/eigen3/Eigen/src/Core/StlIterators.h +463 -0
- include/eigen3/Eigen/src/Core/Stride.h +116 -0
- include/eigen3/Eigen/src/Core/Swap.h +68 -0
- include/eigen3/Eigen/src/Core/Transpose.h +464 -0
- include/eigen3/Eigen/src/Core/Transpositions.h +386 -0
- include/eigen3/Eigen/src/Core/TriangularMatrix.h +1001 -0
- include/eigen3/Eigen/src/Core/VectorBlock.h +96 -0
- include/eigen3/Eigen/src/Core/VectorwiseOp.h +784 -0
- include/eigen3/Eigen/src/Core/Visitor.h +381 -0
- include/eigen3/Eigen/src/Core/arch/AVX/Complex.h +372 -0
- include/eigen3/Eigen/src/Core/arch/AVX/MathFunctions.h +228 -0
- include/eigen3/Eigen/src/Core/arch/AVX/PacketMath.h +1574 -0
- include/eigen3/Eigen/src/Core/arch/AVX/TypeCasting.h +115 -0
- include/eigen3/Eigen/src/Core/arch/AVX512/Complex.h +422 -0
- include/eigen3/Eigen/src/Core/arch/AVX512/MathFunctions.h +362 -0
- include/eigen3/Eigen/src/Core/arch/AVX512/PacketMath.h +2303 -0
- include/eigen3/Eigen/src/Core/arch/AVX512/TypeCasting.h +89 -0
- include/eigen3/Eigen/src/Core/arch/AltiVec/Complex.h +417 -0
- include/eigen3/Eigen/src/Core/arch/AltiVec/MathFunctions.h +90 -0
- include/eigen3/Eigen/src/Core/arch/AltiVec/MatrixProduct.h +2937 -0
- include/eigen3/Eigen/src/Core/arch/AltiVec/MatrixProductCommon.h +221 -0
- include/eigen3/Eigen/src/Core/arch/AltiVec/MatrixProductMMA.h +629 -0
- include/eigen3/Eigen/src/Core/arch/AltiVec/PacketMath.h +2711 -0
- include/eigen3/Eigen/src/Core/arch/CUDA/Complex.h +258 -0
- include/eigen3/Eigen/src/Core/arch/Default/BFloat16.h +700 -0
- include/eigen3/Eigen/src/Core/arch/Default/ConjHelper.h +117 -0
- include/eigen3/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h +1649 -0
- include/eigen3/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h +110 -0
- include/eigen3/Eigen/src/Core/arch/Default/Half.h +942 -0
- include/eigen3/Eigen/src/Core/arch/Default/Settings.h +49 -0
- include/eigen3/Eigen/src/Core/arch/Default/TypeCasting.h +120 -0
- include/eigen3/Eigen/src/Core/arch/GPU/MathFunctions.h +103 -0
- include/eigen3/Eigen/src/Core/arch/GPU/PacketMath.h +1685 -0
- include/eigen3/Eigen/src/Core/arch/GPU/TypeCasting.h +80 -0
- include/eigen3/Eigen/src/Core/arch/HIP/hcc/math_constants.h +23 -0
- include/eigen3/Eigen/src/Core/arch/MSA/Complex.h +648 -0
- include/eigen3/Eigen/src/Core/arch/MSA/MathFunctions.h +387 -0
- include/eigen3/Eigen/src/Core/arch/MSA/PacketMath.h +1233 -0
- include/eigen3/Eigen/src/Core/arch/NEON/Complex.h +584 -0
- include/eigen3/Eigen/src/Core/arch/NEON/GeneralBlockPanelKernel.h +183 -0
- include/eigen3/Eigen/src/Core/arch/NEON/MathFunctions.h +75 -0
- include/eigen3/Eigen/src/Core/arch/NEON/PacketMath.h +4587 -0
- include/eigen3/Eigen/src/Core/arch/NEON/TypeCasting.h +1419 -0
- include/eigen3/Eigen/src/Core/arch/SSE/Complex.h +351 -0
- include/eigen3/Eigen/src/Core/arch/SSE/MathFunctions.h +199 -0
- include/eigen3/Eigen/src/Core/arch/SSE/PacketMath.h +1505 -0
- include/eigen3/Eigen/src/Core/arch/SSE/TypeCasting.h +142 -0
- include/eigen3/Eigen/src/Core/arch/SVE/MathFunctions.h +44 -0
- include/eigen3/Eigen/src/Core/arch/SVE/PacketMath.h +752 -0
- include/eigen3/Eigen/src/Core/arch/SVE/TypeCasting.h +49 -0
- include/eigen3/Eigen/src/Core/arch/SYCL/InteropHeaders.h +232 -0
- include/eigen3/Eigen/src/Core/arch/SYCL/MathFunctions.h +301 -0
- include/eigen3/Eigen/src/Core/arch/SYCL/PacketMath.h +670 -0
- include/eigen3/Eigen/src/Core/arch/SYCL/SyclMemoryModel.h +694 -0
- include/eigen3/Eigen/src/Core/arch/SYCL/TypeCasting.h +85 -0
- include/eigen3/Eigen/src/Core/arch/ZVector/Complex.h +426 -0
- include/eigen3/Eigen/src/Core/arch/ZVector/MathFunctions.h +233 -0
- include/eigen3/Eigen/src/Core/arch/ZVector/PacketMath.h +1060 -0
- include/eigen3/Eigen/src/Core/functors/AssignmentFunctors.h +177 -0
- include/eigen3/Eigen/src/Core/functors/BinaryFunctors.h +541 -0
- include/eigen3/Eigen/src/Core/functors/NullaryFunctors.h +189 -0
- include/eigen3/Eigen/src/Core/functors/StlFunctors.h +166 -0
- include/eigen3/Eigen/src/Core/functors/TernaryFunctors.h +25 -0
- include/eigen3/Eigen/src/Core/functors/UnaryFunctors.h +1131 -0
- include/eigen3/Eigen/src/Core/products/GeneralBlockPanelKernel.h +2645 -0
- include/eigen3/Eigen/src/Core/products/GeneralMatrixMatrix.h +517 -0
- include/eigen3/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +317 -0
- include/eigen3/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +145 -0
- include/eigen3/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +124 -0
- include/eigen3/Eigen/src/Core/products/GeneralMatrixVector.h +518 -0
- include/eigen3/Eigen/src/Core/products/GeneralMatrixVector_BLAS.h +136 -0
- include/eigen3/Eigen/src/Core/products/Parallelizer.h +180 -0
- include/eigen3/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +544 -0
- include/eigen3/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +295 -0
- include/eigen3/Eigen/src/Core/products/SelfadjointMatrixVector.h +262 -0
- include/eigen3/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +118 -0
- include/eigen3/Eigen/src/Core/products/SelfadjointProduct.h +133 -0
- include/eigen3/Eigen/src/Core/products/SelfadjointRank2Update.h +94 -0
- include/eigen3/Eigen/src/Core/products/TriangularMatrixMatrix.h +472 -0
- include/eigen3/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +317 -0
- include/eigen3/Eigen/src/Core/products/TriangularMatrixVector.h +350 -0
- include/eigen3/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +255 -0
- include/eigen3/Eigen/src/Core/products/TriangularSolverMatrix.h +337 -0
- include/eigen3/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +167 -0
- include/eigen3/Eigen/src/Core/products/TriangularSolverVector.h +148 -0
- include/eigen3/Eigen/src/Core/util/BlasUtil.h +583 -0
- include/eigen3/Eigen/src/Core/util/ConfigureVectorization.h +512 -0
- include/eigen3/Eigen/src/Core/util/Constants.h +563 -0
- include/eigen3/Eigen/src/Core/util/DisableStupidWarnings.h +106 -0
- include/eigen3/Eigen/src/Core/util/ForwardDeclarations.h +322 -0
- include/eigen3/Eigen/src/Core/util/IndexedViewHelper.h +186 -0
- include/eigen3/Eigen/src/Core/util/IntegralConstant.h +272 -0
- include/eigen3/Eigen/src/Core/util/MKL_support.h +137 -0
- include/eigen3/Eigen/src/Core/util/Macros.h +1464 -0
- include/eigen3/Eigen/src/Core/util/Memory.h +1163 -0
- include/eigen3/Eigen/src/Core/util/Meta.h +812 -0
- include/eigen3/Eigen/src/Core/util/NonMPL2.h +3 -0
- include/eigen3/Eigen/src/Core/util/ReenableStupidWarnings.h +31 -0
- include/eigen3/Eigen/src/Core/util/ReshapedHelper.h +51 -0
- include/eigen3/Eigen/src/Core/util/StaticAssert.h +221 -0
- include/eigen3/Eigen/src/Core/util/SymbolicIndex.h +293 -0
- include/eigen3/Eigen/src/Core/util/XprHelper.h +856 -0
- include/eigen3/Eigen/src/Eigenvalues/ComplexEigenSolver.h +346 -0
- include/eigen3/Eigen/src/Eigenvalues/ComplexSchur.h +462 -0
- include/eigen3/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +91 -0
- include/eigen3/Eigen/src/Eigenvalues/EigenSolver.h +622 -0
- include/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +418 -0
- include/eigen3/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +226 -0
- include/eigen3/Eigen/src/Eigenvalues/HessenbergDecomposition.h +374 -0
- include/eigen3/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +158 -0
- include/eigen3/Eigen/src/Eigenvalues/RealQZ.h +657 -0
- include/eigen3/Eigen/src/Eigenvalues/RealSchur.h +558 -0
- include/eigen3/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +77 -0
- include/eigen3/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +904 -0
- include/eigen3/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +87 -0
- include/eigen3/Eigen/src/Eigenvalues/Tridiagonalization.h +561 -0
- include/eigen3/Eigen/src/Geometry/AlignedBox.h +486 -0
- include/eigen3/Eigen/src/Geometry/AngleAxis.h +247 -0
- include/eigen3/Eigen/src/Geometry/EulerAngles.h +114 -0
- include/eigen3/Eigen/src/Geometry/Homogeneous.h +501 -0
- include/eigen3/Eigen/src/Geometry/Hyperplane.h +282 -0
- include/eigen3/Eigen/src/Geometry/OrthoMethods.h +235 -0
- include/eigen3/Eigen/src/Geometry/ParametrizedLine.h +232 -0
- include/eigen3/Eigen/src/Geometry/Quaternion.h +870 -0
- include/eigen3/Eigen/src/Geometry/Rotation2D.h +199 -0
- include/eigen3/Eigen/src/Geometry/RotationBase.h +206 -0
- include/eigen3/Eigen/src/Geometry/Scaling.h +188 -0
- include/eigen3/Eigen/src/Geometry/Transform.h +1563 -0
- include/eigen3/Eigen/src/Geometry/Translation.h +202 -0
- include/eigen3/Eigen/src/Geometry/Umeyama.h +166 -0
- include/eigen3/Eigen/src/Geometry/arch/Geometry_SIMD.h +168 -0
- include/eigen3/Eigen/src/Householder/BlockHouseholder.h +110 -0
- include/eigen3/Eigen/src/Householder/Householder.h +176 -0
- include/eigen3/Eigen/src/Householder/HouseholderSequence.h +545 -0
- include/eigen3/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +226 -0
- include/eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +212 -0
- include/eigen3/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +229 -0
- include/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +394 -0
- include/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +453 -0
- include/eigen3/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +444 -0
- include/eigen3/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +198 -0
- include/eigen3/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +117 -0
- include/eigen3/Eigen/src/Jacobi/Jacobi.h +483 -0
- include/eigen3/Eigen/src/KLUSupport/KLUSupport.h +358 -0
- include/eigen3/Eigen/src/LU/Determinant.h +117 -0
- include/eigen3/Eigen/src/LU/FullPivLU.h +877 -0
- include/eigen3/Eigen/src/LU/InverseImpl.h +432 -0
- include/eigen3/Eigen/src/LU/PartialPivLU.h +624 -0
- include/eigen3/Eigen/src/LU/PartialPivLU_LAPACKE.h +83 -0
- include/eigen3/Eigen/src/LU/arch/InverseSize4.h +351 -0
- include/eigen3/Eigen/src/MetisSupport/MetisSupport.h +137 -0
- include/eigen3/Eigen/src/OrderingMethods/Amd.h +435 -0
- include/eigen3/Eigen/src/OrderingMethods/Eigen_Colamd.h +1863 -0
- include/eigen3/Eigen/src/OrderingMethods/Ordering.h +153 -0
- include/eigen3/Eigen/src/PaStiXSupport/PaStiXSupport.h +678 -0
- include/eigen3/Eigen/src/PardisoSupport/PardisoSupport.h +545 -0
- include/eigen3/Eigen/src/QR/ColPivHouseholderQR.h +674 -0
- include/eigen3/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +97 -0
- include/eigen3/Eigen/src/QR/CompleteOrthogonalDecomposition.h +635 -0
- include/eigen3/Eigen/src/QR/FullPivHouseholderQR.h +713 -0
- include/eigen3/Eigen/src/QR/HouseholderQR.h +434 -0
- include/eigen3/Eigen/src/QR/HouseholderQR_LAPACKE.h +68 -0
- include/eigen3/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +335 -0
- include/eigen3/Eigen/src/SVD/BDCSVD.h +1366 -0
- include/eigen3/Eigen/src/SVD/JacobiSVD.h +812 -0
- include/eigen3/Eigen/src/SVD/JacobiSVD_LAPACKE.h +91 -0
- include/eigen3/Eigen/src/SVD/SVDBase.h +376 -0
- include/eigen3/Eigen/src/SVD/UpperBidiagonalization.h +414 -0
- include/eigen3/Eigen/src/SparseCholesky/SimplicialCholesky.h +697 -0
- include/eigen3/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +174 -0
- include/eigen3/Eigen/src/SparseCore/AmbiVector.h +378 -0
- include/eigen3/Eigen/src/SparseCore/CompressedStorage.h +274 -0
- include/eigen3/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +352 -0
- include/eigen3/Eigen/src/SparseCore/MappedSparseMatrix.h +67 -0
- include/eigen3/Eigen/src/SparseCore/SparseAssign.h +270 -0
- include/eigen3/Eigen/src/SparseCore/SparseBlock.h +571 -0
- include/eigen3/Eigen/src/SparseCore/SparseColEtree.h +206 -0
- include/eigen3/Eigen/src/SparseCore/SparseCompressedBase.h +370 -0
- include/eigen3/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +722 -0
- include/eigen3/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +150 -0
- include/eigen3/Eigen/src/SparseCore/SparseDenseProduct.h +342 -0
- include/eigen3/Eigen/src/SparseCore/SparseDiagonalProduct.h +138 -0
- include/eigen3/Eigen/src/SparseCore/SparseDot.h +98 -0
- include/eigen3/Eigen/src/SparseCore/SparseFuzzy.h +29 -0
- include/eigen3/Eigen/src/SparseCore/SparseMap.h +305 -0
- include/eigen3/Eigen/src/SparseCore/SparseMatrix.h +1518 -0
- include/eigen3/Eigen/src/SparseCore/SparseMatrixBase.h +398 -0
- include/eigen3/Eigen/src/SparseCore/SparsePermutation.h +178 -0
- include/eigen3/Eigen/src/SparseCore/SparseProduct.h +181 -0
- include/eigen3/Eigen/src/SparseCore/SparseRedux.h +49 -0
- include/eigen3/Eigen/src/SparseCore/SparseRef.h +397 -0
- include/eigen3/Eigen/src/SparseCore/SparseSelfAdjointView.h +659 -0
- include/eigen3/Eigen/src/SparseCore/SparseSolverBase.h +124 -0
- include/eigen3/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +198 -0
- include/eigen3/Eigen/src/SparseCore/SparseTranspose.h +92 -0
- include/eigen3/Eigen/src/SparseCore/SparseTriangularView.h +189 -0
- include/eigen3/Eigen/src/SparseCore/SparseUtil.h +186 -0
- include/eigen3/Eigen/src/SparseCore/SparseVector.h +478 -0
- include/eigen3/Eigen/src/SparseCore/SparseView.h +254 -0
- include/eigen3/Eigen/src/SparseCore/TriangularSolver.h +315 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU.h +923 -0
- include/eigen3/Eigen/src/SparseLU/SparseLUImpl.h +66 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_Memory.h +226 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_Structs.h +110 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +375 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_Utils.h +80 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_column_bmod.h +181 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_column_dfs.h +179 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +107 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +280 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +126 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +130 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_panel_bmod.h +223 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_panel_dfs.h +258 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_pivotL.h +137 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_pruneL.h +136 -0
- include/eigen3/Eigen/src/SparseLU/SparseLU_relax_snode.h +83 -0
- include/eigen3/Eigen/src/SparseQR/SparseQR.h +758 -0
- include/eigen3/Eigen/src/StlSupport/StdDeque.h +116 -0
- include/eigen3/Eigen/src/StlSupport/StdList.h +106 -0
- include/eigen3/Eigen/src/StlSupport/StdVector.h +131 -0
- include/eigen3/Eigen/src/StlSupport/details.h +84 -0
- include/eigen3/Eigen/src/SuperLUSupport/SuperLUSupport.h +1025 -0
- include/eigen3/Eigen/src/UmfPackSupport/UmfPackSupport.h +642 -0
- include/eigen3/Eigen/src/misc/Image.h +82 -0
- include/eigen3/Eigen/src/misc/Kernel.h +79 -0
- include/eigen3/Eigen/src/misc/RealSvd2x2.h +55 -0
- include/eigen3/Eigen/src/misc/blas.h +440 -0
- include/eigen3/Eigen/src/misc/lapack.h +152 -0
- include/eigen3/Eigen/src/misc/lapacke.h +16292 -0
- include/eigen3/Eigen/src/misc/lapacke_mangling.h +17 -0
- include/eigen3/Eigen/src/plugins/ArrayCwiseBinaryOps.h +358 -0
- include/eigen3/Eigen/src/plugins/ArrayCwiseUnaryOps.h +696 -0
- include/eigen3/Eigen/src/plugins/BlockMethods.h +1442 -0
- include/eigen3/Eigen/src/plugins/CommonCwiseBinaryOps.h +115 -0
- include/eigen3/Eigen/src/plugins/CommonCwiseUnaryOps.h +177 -0
- include/eigen3/Eigen/src/plugins/IndexedViewMethods.h +262 -0
- include/eigen3/Eigen/src/plugins/MatrixCwiseBinaryOps.h +152 -0
- include/eigen3/Eigen/src/plugins/MatrixCwiseUnaryOps.h +95 -0
- include/eigen3/Eigen/src/plugins/ReshapedMethods.h +149 -0
- include/eigen3/signature_of_eigen3_matrix_library +1 -0
- include/eigen3/unsupported/Eigen/AdolcForward +159 -0
- include/eigen3/unsupported/Eigen/AlignedVector3 +234 -0
- include/eigen3/unsupported/Eigen/ArpackSupport +30 -0
- include/eigen3/unsupported/Eigen/AutoDiff +46 -0
- include/eigen3/unsupported/Eigen/BVH +95 -0
- include/eigen3/unsupported/Eigen/CXX11/Tensor +137 -0
- include/eigen3/unsupported/Eigen/CXX11/TensorSymmetry +42 -0
- include/eigen3/unsupported/Eigen/CXX11/ThreadPool +74 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +554 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +329 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +247 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +1176 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +1559 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +1093 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +518 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +377 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +1023 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +73 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +6 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +1413 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +575 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +1650 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +1679 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +456 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +1132 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +544 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +214 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +347 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +137 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +6 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +104 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +389 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +1048 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +409 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +236 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +490 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +236 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +983 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +703 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +388 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +669 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +379 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +237 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +191 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +488 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +302 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +33 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +99 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +44 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +79 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +603 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +738 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +247 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +82 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +263 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +216 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +98 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +327 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +311 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +1102 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +708 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +291 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +322 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +998 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +6 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +966 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +582 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +454 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +465 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +528 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +513 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +471 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +161 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +346 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +303 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +264 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +249 -0
- include/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +629 -0
- include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +293 -0
- include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +236 -0
- include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +338 -0
- include/eigen3/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +669 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +67 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +249 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +486 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +236 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +23 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +40 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +301 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +48 -0
- include/eigen3/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +20 -0
- include/eigen3/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +537 -0
- include/eigen3/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +88 -0
- include/eigen3/unsupported/Eigen/CXX11/src/util/EmulateArray.h +261 -0
- include/eigen3/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +158 -0
- include/eigen3/unsupported/Eigen/EulerAngles +43 -0
- include/eigen3/unsupported/Eigen/FFT +419 -0
- include/eigen3/unsupported/Eigen/IterativeSolvers +51 -0
- include/eigen3/unsupported/Eigen/KroneckerProduct +36 -0
- include/eigen3/unsupported/Eigen/LevenbergMarquardt +49 -0
- include/eigen3/unsupported/Eigen/MPRealSupport +213 -0
- include/eigen3/unsupported/Eigen/MatrixFunctions +504 -0
- include/eigen3/unsupported/Eigen/MoreVectorization +24 -0
- include/eigen3/unsupported/Eigen/NonLinearOptimization +140 -0
- include/eigen3/unsupported/Eigen/NumericalDiff +56 -0
- include/eigen3/unsupported/Eigen/OpenGLSupport +322 -0
- include/eigen3/unsupported/Eigen/Polynomials +137 -0
- include/eigen3/unsupported/Eigen/Skyline +39 -0
- include/eigen3/unsupported/Eigen/SparseExtra +54 -0
- include/eigen3/unsupported/Eigen/SpecialFunctions +103 -0
- include/eigen3/unsupported/Eigen/Splines +35 -0
- include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +108 -0
- include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +730 -0
- include/eigen3/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +220 -0
- include/eigen3/unsupported/Eigen/src/BVH/BVAlgorithms.h +293 -0
- include/eigen3/unsupported/Eigen/src/BVH/KdBVH.h +223 -0
- include/eigen3/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +790 -0
- include/eigen3/unsupported/Eigen/src/EulerAngles/EulerAngles.h +355 -0
- include/eigen3/unsupported/Eigen/src/EulerAngles/EulerSystem.h +305 -0
- include/eigen3/unsupported/Eigen/src/FFT/ei_fftw_impl.h +261 -0
- include/eigen3/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +449 -0
- include/eigen3/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +187 -0
- include/eigen3/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +511 -0
- include/eigen3/unsupported/Eigen/src/IterativeSolvers/GMRES.h +335 -0
- include/eigen3/unsupported/Eigen/src/IterativeSolvers/IDRS.h +436 -0
- include/eigen3/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +90 -0
- include/eigen3/unsupported/Eigen/src/IterativeSolvers/IterationController.h +154 -0
- include/eigen3/unsupported/Eigen/src/IterativeSolvers/MINRES.h +267 -0
- include/eigen3/unsupported/Eigen/src/IterativeSolvers/Scaling.h +193 -0
- include/eigen3/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +305 -0
- include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +84 -0
- include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +202 -0
- include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +160 -0
- include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +188 -0
- include/eigen3/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +396 -0
- include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +441 -0
- include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +569 -0
- include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +373 -0
- include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +705 -0
- include/eigen3/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +368 -0
- include/eigen3/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +117 -0
- include/eigen3/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +95 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +601 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +657 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/chkder.h +66 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/covar.h +70 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +107 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +79 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +298 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +91 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +30 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +99 -0
- include/eigen3/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +49 -0
- include/eigen3/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +130 -0
- include/eigen3/unsupported/Eigen/src/Polynomials/Companion.h +280 -0
- include/eigen3/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +428 -0
- include/eigen3/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +143 -0
- include/eigen3/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +352 -0
- include/eigen3/unsupported/Eigen/src/Skyline/SkylineMatrix.h +862 -0
- include/eigen3/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +212 -0
- include/eigen3/unsupported/Eigen/src/Skyline/SkylineProduct.h +295 -0
- include/eigen3/unsupported/Eigen/src/Skyline/SkylineStorage.h +259 -0
- include/eigen3/unsupported/Eigen/src/Skyline/SkylineUtil.h +89 -0
- include/eigen3/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +122 -0
- include/eigen3/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +1079 -0
- include/eigen3/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +404 -0
- include/eigen3/unsupported/Eigen/src/SparseExtra/MarketIO.h +282 -0
- include/eigen3/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +247 -0
- include/eigen3/unsupported/Eigen/src/SparseExtra/RandomSetter.h +349 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +286 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +68 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +357 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +66 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +1959 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +118 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +67 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +167 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +58 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +330 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +58 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +2045 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +79 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +46 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +16 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +46 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +16 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +369 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +54 -0
- include/eigen3/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +34 -0
- include/eigen3/unsupported/Eigen/src/Splines/Spline.h +507 -0
- include/eigen3/unsupported/Eigen/src/Splines/SplineFitting.h +431 -0
- include/eigen3/unsupported/Eigen/src/Splines/SplineFwd.h +93 -0
- pylibsparseir/__init__.py +31 -0
- pylibsparseir/clean_build_artifacts.py +0 -1
- pylibsparseir/core.py +160 -45
- pylibsparseir/libsparseir.dylib +0 -0
- pylibsparseir-0.5.2.dist-info/METADATA +215 -0
- pylibsparseir-0.5.2.dist-info/RECORD +545 -0
- {pylibsparseir-0.1.0.dist-info → pylibsparseir-0.5.2.dist-info}/WHEEL +1 -1
- pylibsparseir-0.5.2.dist-info/licenses/LICENSE +21 -0
- share/eigen3/cmake/Eigen3Config.cmake +37 -0
- share/eigen3/cmake/Eigen3ConfigVersion.cmake +65 -0
- share/eigen3/cmake/Eigen3Targets.cmake +106 -0
- share/eigen3/cmake/UseEigen3.cmake +6 -0
- share/pkgconfig/eigen3.pc +9 -0
- pylibsparseir/libsparseir.0.4.2.dylib +0 -0
- pylibsparseir/libsparseir.0.dylib +0 -0
- pylibsparseir-0.1.0.dist-info/METADATA +0 -130
- pylibsparseir-0.1.0.dist-info/RECORD +0 -12
- pylibsparseir-0.1.0.dist-info/entry_points.txt +0 -2
- pylibsparseir-0.1.0.dist-info/top_level.txt +0 -1
|
@@ -0,0 +1,1132 @@
|
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
|
2
|
+
// for linear algebra.
|
|
3
|
+
//
|
|
4
|
+
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
5
|
+
//
|
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
9
|
+
|
|
10
|
+
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
|
|
11
|
+
#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
|
|
12
|
+
|
|
13
|
+
namespace Eigen {
|
|
14
|
+
|
|
15
|
+
/** \class TensorConvolution
|
|
16
|
+
* \ingroup CXX11_Tensor_Module
|
|
17
|
+
*
|
|
18
|
+
* \brief Tensor convolution class.
|
|
19
|
+
*
|
|
20
|
+
*
|
|
21
|
+
*/
|
|
22
|
+
namespace internal {
|
|
23
|
+
|
|
24
|
+
template <typename Index, typename InputDims, int NumKernelDims, int Layout>
|
|
25
|
+
class IndexMapper {
|
|
26
|
+
public:
|
|
27
|
+
IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims,
|
|
28
|
+
const array<Index, NumKernelDims>& indices) {
|
|
29
|
+
|
|
30
|
+
array<Index, NumDims> dimensions = input_dims;
|
|
31
|
+
for (int i = 0; i < NumKernelDims; ++i) {
|
|
32
|
+
const Index index = indices[i];
|
|
33
|
+
const Index input_dim = input_dims[index];
|
|
34
|
+
const Index kernel_dim = kernel_dims[i];
|
|
35
|
+
const Index result_dim = input_dim - kernel_dim + 1;
|
|
36
|
+
dimensions[index] = result_dim;
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
array<Index, NumDims> inputStrides;
|
|
40
|
+
array<Index, NumDims> outputStrides;
|
|
41
|
+
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
42
|
+
inputStrides[0] = 1;
|
|
43
|
+
outputStrides[0] = 1;
|
|
44
|
+
for (int i = 1; i < NumDims; ++i) {
|
|
45
|
+
inputStrides[i] = inputStrides[i-1] * input_dims[i-1];
|
|
46
|
+
outputStrides[i] = outputStrides[i-1] * dimensions[i-1];
|
|
47
|
+
}
|
|
48
|
+
} else {
|
|
49
|
+
inputStrides[NumDims - 1] = 1;
|
|
50
|
+
outputStrides[NumDims - 1] = 1;
|
|
51
|
+
for (int i = static_cast<int>(NumDims) - 2; i >= 0; --i) {
|
|
52
|
+
inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1];
|
|
53
|
+
outputStrides[i] = outputStrides[i + 1] * dimensions[i + 1];
|
|
54
|
+
}
|
|
55
|
+
}
|
|
56
|
+
|
|
57
|
+
array<Index, NumDims> gpuInputDimensions;
|
|
58
|
+
array<Index, NumDims> gpuOutputDimensions;
|
|
59
|
+
array<Index, NumDims> tmp = dimensions;
|
|
60
|
+
array<Index, NumDims> ordering;
|
|
61
|
+
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
62
|
+
? 0
|
|
63
|
+
: NumDims - NumKernelDims;
|
|
64
|
+
for (int i = 0; i < NumKernelDims; ++i) {
|
|
65
|
+
const Index index = i + offset;
|
|
66
|
+
ordering[index] = indices[i];
|
|
67
|
+
tmp[indices[i]] = -1;
|
|
68
|
+
gpuInputDimensions[index] = input_dims[indices[i]];
|
|
69
|
+
gpuOutputDimensions[index] = dimensions[indices[i]];
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
int written = static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
73
|
+
? NumKernelDims
|
|
74
|
+
: 0;
|
|
75
|
+
for (int i = 0; i < NumDims; ++i) {
|
|
76
|
+
if (tmp[i] >= 0) {
|
|
77
|
+
ordering[written] = i;
|
|
78
|
+
gpuInputDimensions[written] = input_dims[i];
|
|
79
|
+
gpuOutputDimensions[written] = dimensions[i];
|
|
80
|
+
++written;
|
|
81
|
+
}
|
|
82
|
+
}
|
|
83
|
+
|
|
84
|
+
for (int i = 0; i < NumDims; ++i) {
|
|
85
|
+
m_inputStrides[i] = inputStrides[ordering[i]];
|
|
86
|
+
m_outputStrides[i] = outputStrides[ordering[i]];
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
90
|
+
for (int i = 0; i < NumDims; ++i) {
|
|
91
|
+
if (i > NumKernelDims) {
|
|
92
|
+
m_gpuInputStrides[i] =
|
|
93
|
+
m_gpuInputStrides[i - 1] * gpuInputDimensions[i - 1];
|
|
94
|
+
m_gpuOutputStrides[i] =
|
|
95
|
+
m_gpuOutputStrides[i - 1] * gpuOutputDimensions[i - 1];
|
|
96
|
+
} else {
|
|
97
|
+
m_gpuInputStrides[i] = 1;
|
|
98
|
+
m_gpuOutputStrides[i] = 1;
|
|
99
|
+
}
|
|
100
|
+
}
|
|
101
|
+
} else {
|
|
102
|
+
for (int i = NumDims - 1; i >= 0; --i) {
|
|
103
|
+
if (static_cast<size_t>(i + 1) < offset) {
|
|
104
|
+
m_gpuInputStrides[i] =
|
|
105
|
+
m_gpuInputStrides[i + 1] * gpuInputDimensions[i + 1];
|
|
106
|
+
m_gpuOutputStrides[i] =
|
|
107
|
+
m_gpuOutputStrides[i + 1] * gpuOutputDimensions[i + 1];
|
|
108
|
+
} else {
|
|
109
|
+
m_gpuInputStrides[i] = 1;
|
|
110
|
+
m_gpuOutputStrides[i] = 1;
|
|
111
|
+
}
|
|
112
|
+
}
|
|
113
|
+
}
|
|
114
|
+
}
|
|
115
|
+
|
|
116
|
+
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputPlaneToTensorInputOffset(Index p) const {
|
|
117
|
+
Index inputIndex = 0;
|
|
118
|
+
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
119
|
+
for (int d = NumDims - 1; d > NumKernelDims; --d) {
|
|
120
|
+
const Index idx = p / m_gpuInputStrides[d];
|
|
121
|
+
inputIndex += idx * m_inputStrides[d];
|
|
122
|
+
p -= idx * m_gpuInputStrides[d];
|
|
123
|
+
}
|
|
124
|
+
inputIndex += p * m_inputStrides[NumKernelDims];
|
|
125
|
+
} else {
|
|
126
|
+
std::ptrdiff_t limit = 0;
|
|
127
|
+
if (NumKernelDims < NumDims) {
|
|
128
|
+
limit = NumDims - NumKernelDims - 1;
|
|
129
|
+
}
|
|
130
|
+
for (int d = 0; d < limit; ++d) {
|
|
131
|
+
const Index idx = p / m_gpuInputStrides[d];
|
|
132
|
+
inputIndex += idx * m_inputStrides[d];
|
|
133
|
+
p -= idx * m_gpuInputStrides[d];
|
|
134
|
+
}
|
|
135
|
+
inputIndex += p * m_inputStrides[limit];
|
|
136
|
+
}
|
|
137
|
+
return inputIndex;
|
|
138
|
+
}
|
|
139
|
+
|
|
140
|
+
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputPlaneToTensorOutputOffset(Index p) const {
|
|
141
|
+
Index outputIndex = 0;
|
|
142
|
+
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
143
|
+
for (int d = NumDims - 1; d > NumKernelDims; --d) {
|
|
144
|
+
const Index idx = p / m_gpuOutputStrides[d];
|
|
145
|
+
outputIndex += idx * m_outputStrides[d];
|
|
146
|
+
p -= idx * m_gpuOutputStrides[d];
|
|
147
|
+
}
|
|
148
|
+
outputIndex += p * m_outputStrides[NumKernelDims];
|
|
149
|
+
} else {
|
|
150
|
+
std::ptrdiff_t limit = 0;
|
|
151
|
+
if (NumKernelDims < NumDims) {
|
|
152
|
+
limit = NumDims - NumKernelDims - 1;
|
|
153
|
+
}
|
|
154
|
+
for (int d = 0; d < limit; ++d) {
|
|
155
|
+
const Index idx = p / m_gpuOutputStrides[d];
|
|
156
|
+
outputIndex += idx * m_outputStrides[d];
|
|
157
|
+
p -= idx * m_gpuOutputStrides[d];
|
|
158
|
+
}
|
|
159
|
+
outputIndex += p * m_outputStrides[limit];
|
|
160
|
+
}
|
|
161
|
+
return outputIndex;
|
|
162
|
+
}
|
|
163
|
+
|
|
164
|
+
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i) const {
|
|
165
|
+
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
166
|
+
? 0
|
|
167
|
+
: NumDims - NumKernelDims;
|
|
168
|
+
return i * m_inputStrides[offset];
|
|
169
|
+
}
|
|
170
|
+
|
|
171
|
+
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i) const {
|
|
172
|
+
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
173
|
+
? 0
|
|
174
|
+
: NumDims - NumKernelDims;
|
|
175
|
+
return i * m_outputStrides[offset];
|
|
176
|
+
}
|
|
177
|
+
|
|
178
|
+
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j) const {
|
|
179
|
+
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
180
|
+
? 0
|
|
181
|
+
: NumDims - NumKernelDims;
|
|
182
|
+
return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1];
|
|
183
|
+
}
|
|
184
|
+
|
|
185
|
+
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j) const {
|
|
186
|
+
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
187
|
+
? 0
|
|
188
|
+
: NumDims - NumKernelDims;
|
|
189
|
+
return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1];
|
|
190
|
+
}
|
|
191
|
+
|
|
192
|
+
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
|
|
193
|
+
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
194
|
+
? 0
|
|
195
|
+
: NumDims - NumKernelDims;
|
|
196
|
+
return i * m_inputStrides[offset] + j * m_inputStrides[offset + 1] +
|
|
197
|
+
k * m_inputStrides[offset + 2];
|
|
198
|
+
}
|
|
199
|
+
|
|
200
|
+
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapGpuOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
|
|
201
|
+
const size_t offset = static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
202
|
+
? 0
|
|
203
|
+
: NumDims - NumKernelDims;
|
|
204
|
+
return i * m_outputStrides[offset] + j * m_outputStrides[offset + 1] +
|
|
205
|
+
k * m_outputStrides[offset + 2];
|
|
206
|
+
}
|
|
207
|
+
|
|
208
|
+
private:
|
|
209
|
+
static const int NumDims = internal::array_size<InputDims>::value;
|
|
210
|
+
array<Index, NumDims> m_inputStrides;
|
|
211
|
+
array<Index, NumDims> m_outputStrides;
|
|
212
|
+
array<Index, NumDims> m_gpuInputStrides;
|
|
213
|
+
array<Index, NumDims> m_gpuOutputStrides;
|
|
214
|
+
};
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
template<typename Dimensions, typename InputXprType, typename KernelXprType>
|
|
219
|
+
struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
|
|
220
|
+
{
|
|
221
|
+
// Type promotion to handle the case where the types of the lhs and the rhs are different.
|
|
222
|
+
typedef typename promote_storage_type<typename InputXprType::Scalar,
|
|
223
|
+
typename KernelXprType::Scalar>::ret Scalar;
|
|
224
|
+
typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
|
|
225
|
+
typename traits<KernelXprType>::StorageKind>::ret StorageKind;
|
|
226
|
+
typedef typename promote_index_type<typename traits<InputXprType>::Index,
|
|
227
|
+
typename traits<KernelXprType>::Index>::type Index;
|
|
228
|
+
typedef typename InputXprType::Nested LhsNested;
|
|
229
|
+
typedef typename KernelXprType::Nested RhsNested;
|
|
230
|
+
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
|
231
|
+
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
|
232
|
+
static const int NumDimensions = traits<InputXprType>::NumDimensions;
|
|
233
|
+
static const int Layout = traits<InputXprType>::Layout;
|
|
234
|
+
typedef typename conditional<Pointer_type_promotion<typename InputXprType::Scalar, Scalar>::val,
|
|
235
|
+
typename traits<InputXprType>::PointerType, typename traits<KernelXprType>::PointerType>::type PointerType;
|
|
236
|
+
|
|
237
|
+
enum {
|
|
238
|
+
Flags = 0
|
|
239
|
+
};
|
|
240
|
+
};
|
|
241
|
+
|
|
242
|
+
template<typename Dimensions, typename InputXprType, typename KernelXprType>
|
|
243
|
+
struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense>
|
|
244
|
+
{
|
|
245
|
+
typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type;
|
|
246
|
+
};
|
|
247
|
+
|
|
248
|
+
template<typename Dimensions, typename InputXprType, typename KernelXprType>
|
|
249
|
+
struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type>
|
|
250
|
+
{
|
|
251
|
+
typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type;
|
|
252
|
+
};
|
|
253
|
+
|
|
254
|
+
} // end namespace internal
|
|
255
|
+
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
template<typename Indices, typename InputXprType, typename KernelXprType>
|
|
259
|
+
class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType>, ReadOnlyAccessors>
|
|
260
|
+
{
|
|
261
|
+
public:
|
|
262
|
+
typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar;
|
|
263
|
+
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
|
264
|
+
typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType,
|
|
265
|
+
typename KernelXprType::CoeffReturnType>::ret CoeffReturnType;
|
|
266
|
+
typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested;
|
|
267
|
+
typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind;
|
|
268
|
+
typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index;
|
|
269
|
+
|
|
270
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims)
|
|
271
|
+
: m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {}
|
|
272
|
+
|
|
273
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
274
|
+
const Indices& indices() const { return m_indices; }
|
|
275
|
+
|
|
276
|
+
/** \returns the nested expressions */
|
|
277
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
278
|
+
const typename internal::remove_all<typename InputXprType::Nested>::type&
|
|
279
|
+
inputExpression() const { return m_input_xpr; }
|
|
280
|
+
|
|
281
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
|
282
|
+
const typename internal::remove_all<typename KernelXprType::Nested>::type&
|
|
283
|
+
kernelExpression() const { return m_kernel_xpr; }
|
|
284
|
+
|
|
285
|
+
protected:
|
|
286
|
+
typename InputXprType::Nested m_input_xpr;
|
|
287
|
+
typename KernelXprType::Nested m_kernel_xpr;
|
|
288
|
+
const Indices m_indices;
|
|
289
|
+
};
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
template<typename Indices, typename InputArgType, typename KernelArgType, typename Device>
|
|
293
|
+
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Device>
|
|
294
|
+
{
|
|
295
|
+
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
|
|
296
|
+
|
|
297
|
+
static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value;
|
|
298
|
+
static const int NumKernelDims = internal::array_size<Indices>::value;
|
|
299
|
+
typedef typename XprType::Index Index;
|
|
300
|
+
typedef DSizes<Index, NumDims> Dimensions;
|
|
301
|
+
|
|
302
|
+
typedef typename XprType::Scalar Scalar;
|
|
303
|
+
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
304
|
+
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
|
305
|
+
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
|
|
306
|
+
typedef StorageMemory<Scalar, Device> Storage;
|
|
307
|
+
typedef typename Storage::Type EvaluatorPointerType;
|
|
308
|
+
|
|
309
|
+
enum {
|
|
310
|
+
IsAligned = int(TensorEvaluator<InputArgType, Device>::IsAligned) & int(TensorEvaluator<KernelArgType, Device>::IsAligned),
|
|
311
|
+
PacketAccess = int(TensorEvaluator<InputArgType, Device>::PacketAccess) & int(TensorEvaluator<KernelArgType, Device>::PacketAccess),
|
|
312
|
+
BlockAccess = false,
|
|
313
|
+
PreferBlockAccess = false,
|
|
314
|
+
Layout = TensorEvaluator<InputArgType, Device>::Layout,
|
|
315
|
+
CoordAccess = false, // to be implemented
|
|
316
|
+
RawAccess = false
|
|
317
|
+
};
|
|
318
|
+
|
|
319
|
+
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
|
|
320
|
+
typedef internal::TensorBlockNotImplemented TensorBlock;
|
|
321
|
+
//===--------------------------------------------------------------------===//
|
|
322
|
+
|
|
323
|
+
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
|
324
|
+
: m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device)
|
|
325
|
+
{
|
|
326
|
+
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
327
|
+
|
|
328
|
+
const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
|
|
329
|
+
const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
|
|
330
|
+
|
|
331
|
+
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
332
|
+
m_inputStride[0] = 1;
|
|
333
|
+
for (int i = 1; i < NumDims; ++i) {
|
|
334
|
+
m_inputStride[i] = m_inputStride[i - 1] * input_dims[i - 1];
|
|
335
|
+
}
|
|
336
|
+
} else {
|
|
337
|
+
m_inputStride[NumDims - 1] = 1;
|
|
338
|
+
for (int i = NumDims - 2; i >= 0; --i) {
|
|
339
|
+
m_inputStride[i] = m_inputStride[i + 1] * input_dims[i + 1];
|
|
340
|
+
}
|
|
341
|
+
}
|
|
342
|
+
|
|
343
|
+
m_dimensions = m_inputImpl.dimensions();
|
|
344
|
+
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
345
|
+
for (int i = 0; i < NumKernelDims; ++i) {
|
|
346
|
+
const Index index = op.indices()[i];
|
|
347
|
+
const Index input_dim = input_dims[index];
|
|
348
|
+
const Index kernel_dim = kernel_dims[i];
|
|
349
|
+
const Index result_dim = input_dim - kernel_dim + 1;
|
|
350
|
+
m_dimensions[index] = result_dim;
|
|
351
|
+
if (i > 0) {
|
|
352
|
+
m_kernelStride[i] = m_kernelStride[i - 1] * kernel_dims[i - 1];
|
|
353
|
+
} else {
|
|
354
|
+
m_kernelStride[0] = 1;
|
|
355
|
+
}
|
|
356
|
+
m_indexStride[i] = m_inputStride[index];
|
|
357
|
+
}
|
|
358
|
+
|
|
359
|
+
m_outputStride[0] = 1;
|
|
360
|
+
for (int i = 1; i < NumDims; ++i) {
|
|
361
|
+
m_outputStride[i] = m_outputStride[i - 1] * m_dimensions[i - 1];
|
|
362
|
+
}
|
|
363
|
+
} else {
|
|
364
|
+
for (int i = NumKernelDims - 1; i >= 0; --i) {
|
|
365
|
+
const Index index = op.indices()[i];
|
|
366
|
+
const Index input_dim = input_dims[index];
|
|
367
|
+
const Index kernel_dim = kernel_dims[i];
|
|
368
|
+
const Index result_dim = input_dim - kernel_dim + 1;
|
|
369
|
+
m_dimensions[index] = result_dim;
|
|
370
|
+
if (i < NumKernelDims - 1) {
|
|
371
|
+
m_kernelStride[i] = m_kernelStride[i + 1] * kernel_dims[i + 1];
|
|
372
|
+
} else {
|
|
373
|
+
m_kernelStride[NumKernelDims - 1] = 1;
|
|
374
|
+
}
|
|
375
|
+
m_indexStride[i] = m_inputStride[index];
|
|
376
|
+
}
|
|
377
|
+
|
|
378
|
+
m_outputStride[NumDims - 1] = 1;
|
|
379
|
+
for (int i = NumDims - 2; i >= 0; --i) {
|
|
380
|
+
m_outputStride[i] = m_outputStride[i + 1] * m_dimensions[i + 1];
|
|
381
|
+
}
|
|
382
|
+
}
|
|
383
|
+
}
|
|
384
|
+
|
|
385
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
|
386
|
+
|
|
387
|
+
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
|
|
388
|
+
m_inputImpl.evalSubExprsIfNeeded(NULL);
|
|
389
|
+
preloadKernel();
|
|
390
|
+
return true;
|
|
391
|
+
}
|
|
392
|
+
EIGEN_STRONG_INLINE void cleanup() {
|
|
393
|
+
m_inputImpl.cleanup();
|
|
394
|
+
if (m_local_kernel) {
|
|
395
|
+
m_device.deallocate((void*)m_kernel);
|
|
396
|
+
m_local_kernel = false;
|
|
397
|
+
}
|
|
398
|
+
m_kernel = NULL;
|
|
399
|
+
}
|
|
400
|
+
|
|
401
|
+
void evalTo(typename XprType::Scalar* buffer) {
|
|
402
|
+
evalSubExprsIfNeeded(NULL);
|
|
403
|
+
for (int i = 0; i < dimensions().TotalSize(); ++i) {
|
|
404
|
+
buffer[i] += coeff(i);
|
|
405
|
+
}
|
|
406
|
+
cleanup();
|
|
407
|
+
}
|
|
408
|
+
|
|
409
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
410
|
+
{
|
|
411
|
+
CoeffReturnType result = CoeffReturnType(0);
|
|
412
|
+
convolve(firstInput(index), 0, NumKernelDims-1, result);
|
|
413
|
+
return result;
|
|
414
|
+
}
|
|
415
|
+
|
|
416
|
+
template<int LoadMode>
|
|
417
|
+
EIGEN_DEVICE_FUNC PacketReturnType packet(const Index index) const
|
|
418
|
+
{
|
|
419
|
+
Index indices[2] = {index, index+PacketSize-1};
|
|
420
|
+
Index startInputs[2] = {0, 0};
|
|
421
|
+
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
422
|
+
for (int i = NumDims - 1; i > 0; --i) {
|
|
423
|
+
const Index idx0 = indices[0] / m_outputStride[i];
|
|
424
|
+
const Index idx1 = indices[1] / m_outputStride[i];
|
|
425
|
+
startInputs[0] += idx0 * m_inputStride[i];
|
|
426
|
+
startInputs[1] += idx1 * m_inputStride[i];
|
|
427
|
+
indices[0] -= idx0 * m_outputStride[i];
|
|
428
|
+
indices[1] -= idx1 * m_outputStride[i];
|
|
429
|
+
}
|
|
430
|
+
} else {
|
|
431
|
+
for (int i = 0; i < NumDims - 1; ++i) {
|
|
432
|
+
const Index idx0 = indices[0] / m_outputStride[i];
|
|
433
|
+
const Index idx1 = indices[1] / m_outputStride[i];
|
|
434
|
+
startInputs[0] += idx0 * m_inputStride[i];
|
|
435
|
+
startInputs[1] += idx1 * m_inputStride[i];
|
|
436
|
+
indices[0] -= idx0 * m_outputStride[i];
|
|
437
|
+
indices[1] -= idx1 * m_outputStride[i];
|
|
438
|
+
}
|
|
439
|
+
}
|
|
440
|
+
startInputs[0] += indices[0];
|
|
441
|
+
startInputs[1] += indices[1];
|
|
442
|
+
|
|
443
|
+
if (startInputs[1]-startInputs[0] == PacketSize-1) {
|
|
444
|
+
PacketReturnType result = internal::pset1<PacketReturnType>(0);
|
|
445
|
+
convolvePacket(startInputs[0], 0, NumKernelDims-1, result);
|
|
446
|
+
return result;
|
|
447
|
+
} else {
|
|
448
|
+
EIGEN_ALIGN_MAX Scalar data[PacketSize];
|
|
449
|
+
data[0] = Scalar(0);
|
|
450
|
+
convolve(startInputs[0], 0, NumKernelDims-1, data[0]);
|
|
451
|
+
for (int i = 1; i < PacketSize-1; ++i) {
|
|
452
|
+
data[i] = Scalar(0);
|
|
453
|
+
convolve(firstInput(index+i), 0, NumKernelDims-1, data[i]);
|
|
454
|
+
}
|
|
455
|
+
data[PacketSize-1] = Scalar(0);
|
|
456
|
+
convolve(startInputs[1], 0, NumKernelDims-1, data[PacketSize-1]);
|
|
457
|
+
return internal::pload<PacketReturnType>(data);
|
|
458
|
+
}
|
|
459
|
+
}
|
|
460
|
+
|
|
461
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
|
|
462
|
+
costPerCoeff(bool vectorized) const {
|
|
463
|
+
const double kernel_size = m_kernelImpl.dimensions().TotalSize();
|
|
464
|
+
// We ignore the use of fused multiply-add.
|
|
465
|
+
const double convolve_compute_cost =
|
|
466
|
+
TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
|
|
467
|
+
const double firstIndex_compute_cost =
|
|
468
|
+
NumDims *
|
|
469
|
+
(2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
|
|
470
|
+
TensorOpCost::DivCost<Index>());
|
|
471
|
+
return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
|
|
472
|
+
kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
|
|
473
|
+
m_kernelImpl.costPerCoeff(vectorized) +
|
|
474
|
+
TensorOpCost(0, 0, convolve_compute_cost, vectorized,
|
|
475
|
+
PacketSize));
|
|
476
|
+
}
|
|
477
|
+
|
|
478
|
+
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
|
|
479
|
+
|
|
480
|
+
private:
|
|
481
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
|
|
482
|
+
Index startInput = 0;
|
|
483
|
+
if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
|
|
484
|
+
for (int i = NumDims - 1; i > 0; --i) {
|
|
485
|
+
const Index idx = index / m_outputStride[i];
|
|
486
|
+
startInput += idx * m_inputStride[i];
|
|
487
|
+
index -= idx * m_outputStride[i];
|
|
488
|
+
}
|
|
489
|
+
} else {
|
|
490
|
+
for (int i = 0; i < NumDims - 1; ++i) {
|
|
491
|
+
const Index idx = index / m_outputStride[i];
|
|
492
|
+
startInput += idx * m_inputStride[i];
|
|
493
|
+
index -= idx * m_outputStride[i];
|
|
494
|
+
}
|
|
495
|
+
}
|
|
496
|
+
startInput += index;
|
|
497
|
+
return startInput;
|
|
498
|
+
}
|
|
499
|
+
|
|
500
|
+
EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const {
|
|
501
|
+
for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
|
|
502
|
+
const Index input = firstIndex + j * m_indexStride[DimIndex];
|
|
503
|
+
const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
|
|
504
|
+
if (DimIndex > 0) {
|
|
505
|
+
convolve(input, kernel, DimIndex-1, accum);
|
|
506
|
+
} else {
|
|
507
|
+
accum += m_inputImpl.coeff(input) * m_kernel[kernel];
|
|
508
|
+
}
|
|
509
|
+
}
|
|
510
|
+
}
|
|
511
|
+
|
|
512
|
+
template <typename Packet>
|
|
513
|
+
EIGEN_DEVICE_FUNC void convolvePacket(Index firstIndex, Index firstKernel, int DimIndex, Packet& accum) const {
|
|
514
|
+
for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
|
|
515
|
+
const Index input = firstIndex + j * m_indexStride[DimIndex];
|
|
516
|
+
const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
|
|
517
|
+
if (DimIndex > 0) {
|
|
518
|
+
convolvePacket(input, kernel, DimIndex-1, accum);
|
|
519
|
+
} else {
|
|
520
|
+
accum = internal::pmadd<Packet>(m_inputImpl.template packet<Unaligned>(input), internal::pset1<Packet>(m_kernel[kernel]), accum);
|
|
521
|
+
}
|
|
522
|
+
}
|
|
523
|
+
}
|
|
524
|
+
|
|
525
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void preloadKernel() {
|
|
526
|
+
// Don't make a local copy of the kernel unless we have to (i.e. it's an
|
|
527
|
+
// expression that needs to be evaluated)
|
|
528
|
+
const Scalar* in_place = m_kernelImpl.data();
|
|
529
|
+
if (in_place) {
|
|
530
|
+
m_kernel = in_place;
|
|
531
|
+
m_local_kernel = false;
|
|
532
|
+
} else {
|
|
533
|
+
size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
|
|
534
|
+
Scalar* local = (Scalar*)m_device.allocate_temp(kernel_sz);
|
|
535
|
+
typedef TensorEvalToOp<const KernelArgType> EvalTo;
|
|
536
|
+
EvalTo evalToTmp(local, m_kernelArg);
|
|
537
|
+
const bool Vectorize = internal::IsVectorizable<Device, KernelArgType>::value;
|
|
538
|
+
internal::TensorExecutor<const EvalTo, Device, Vectorize>::run(evalToTmp, m_device);
|
|
539
|
+
|
|
540
|
+
m_kernel = local;
|
|
541
|
+
m_local_kernel = true;
|
|
542
|
+
}
|
|
543
|
+
}
|
|
544
|
+
|
|
545
|
+
array<Index, NumDims> m_inputStride;
|
|
546
|
+
array<Index, NumDims> m_outputStride;
|
|
547
|
+
|
|
548
|
+
array<Index, NumKernelDims> m_indexStride;
|
|
549
|
+
array<Index, NumKernelDims> m_kernelStride;
|
|
550
|
+
TensorEvaluator<InputArgType, Device> m_inputImpl;
|
|
551
|
+
TensorEvaluator<KernelArgType, Device> m_kernelImpl;
|
|
552
|
+
Dimensions m_dimensions;
|
|
553
|
+
|
|
554
|
+
KernelArgType m_kernelArg;
|
|
555
|
+
const Scalar* m_kernel;
|
|
556
|
+
bool m_local_kernel;
|
|
557
|
+
const Device EIGEN_DEVICE_REF m_device;
|
|
558
|
+
};
|
|
559
|
+
|
|
560
|
+
|
|
561
|
+
|
|
562
|
+
|
|
563
|
+
// Use an optimized implementation of the evaluation code for GPUs whenever possible.
|
|
564
|
+
#if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
|
|
565
|
+
|
|
566
|
+
template <int StaticKernelSize>
|
|
567
|
+
struct GetKernelSize {
|
|
568
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const {
|
|
569
|
+
return StaticKernelSize;
|
|
570
|
+
}
|
|
571
|
+
};
|
|
572
|
+
template <>
|
|
573
|
+
struct GetKernelSize<Dynamic> {
|
|
574
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
|
|
575
|
+
return kernelSize;
|
|
576
|
+
}
|
|
577
|
+
};
|
|
578
|
+
|
|
579
|
+
template <typename InputEvaluator, typename Index, typename InputDims,
|
|
580
|
+
int StaticKernelSize>
|
|
581
|
+
__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel1D(
|
|
582
|
+
InputEvaluator eval,
|
|
583
|
+
const internal::IndexMapper<Index, InputDims, 1, InputEvaluator::Layout>
|
|
584
|
+
indexMapper,
|
|
585
|
+
const float* __restrict kernel, const int numPlanes, const int numX,
|
|
586
|
+
const int maxX, const int kernelSize, float* buffer) {
|
|
587
|
+
#if defined(EIGEN_HIPCC)
|
|
588
|
+
HIP_DYNAMIC_SHARED(float, s)
|
|
589
|
+
#else
|
|
590
|
+
extern __shared__ float s[];
|
|
591
|
+
#endif
|
|
592
|
+
|
|
593
|
+
const int first_x = blockIdx.x * maxX;
|
|
594
|
+
const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
|
|
595
|
+
const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize);
|
|
596
|
+
const int num_x_output = last_x - first_x + 1;
|
|
597
|
+
|
|
598
|
+
const int first_plane = blockIdx.y * blockDim.y;
|
|
599
|
+
const int plane_stride = blockDim.y * gridDim.y;
|
|
600
|
+
|
|
601
|
+
for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) {
|
|
602
|
+
// Load inputs to shared memory
|
|
603
|
+
const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
|
|
604
|
+
const int plane_kernel_offset = threadIdx.y * num_x_input;
|
|
605
|
+
#pragma unroll
|
|
606
|
+
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
|
|
607
|
+
const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x);
|
|
608
|
+
s[i + plane_kernel_offset] = eval.coeff(tensor_index);
|
|
609
|
+
}
|
|
610
|
+
|
|
611
|
+
__syncthreads();
|
|
612
|
+
|
|
613
|
+
// Compute the convolution
|
|
614
|
+
const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
|
|
615
|
+
|
|
616
|
+
#pragma unroll
|
|
617
|
+
for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
|
|
618
|
+
const int kernel_offset = plane_kernel_offset + i;
|
|
619
|
+
float result = 0.0f;
|
|
620
|
+
#pragma unroll
|
|
621
|
+
for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) {
|
|
622
|
+
result += s[k + kernel_offset] * kernel[k];
|
|
623
|
+
}
|
|
624
|
+
const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x);
|
|
625
|
+
buffer[tensor_index] = result;
|
|
626
|
+
}
|
|
627
|
+
__syncthreads();
|
|
628
|
+
}
|
|
629
|
+
};
|
|
630
|
+
|
|
631
|
+
template <typename InputEvaluator, typename Index, typename InputDims,
|
|
632
|
+
int StaticKernelSizeX, int StaticKernelSizeY>
|
|
633
|
+
__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel2D(
|
|
634
|
+
InputEvaluator eval,
|
|
635
|
+
const internal::IndexMapper<Index, InputDims, 2, InputEvaluator::Layout>
|
|
636
|
+
indexMapper,
|
|
637
|
+
const float* __restrict kernel, const int numPlanes, const int numX,
|
|
638
|
+
const int maxX, const int numY, const int maxY, const int kernelSizeX,
|
|
639
|
+
const int kernelSizeY, float* buffer) {
|
|
640
|
+
#if defined(EIGEN_HIPCC)
|
|
641
|
+
HIP_DYNAMIC_SHARED(float, s)
|
|
642
|
+
#else
|
|
643
|
+
extern __shared__ float s[];
|
|
644
|
+
#endif
|
|
645
|
+
|
|
646
|
+
const int first_x = blockIdx.x * maxX;
|
|
647
|
+
const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
|
|
648
|
+
const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX);
|
|
649
|
+
const int num_x_output = last_x - first_x + 1;
|
|
650
|
+
|
|
651
|
+
const int first_y = blockIdx.y * maxY;
|
|
652
|
+
const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
|
|
653
|
+
const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY);
|
|
654
|
+
const int num_y_output = last_y - first_y + 1;
|
|
655
|
+
|
|
656
|
+
const int first_plane = blockIdx.z * blockDim.z;
|
|
657
|
+
const int plane_stride = blockDim.z * gridDim.z;
|
|
658
|
+
|
|
659
|
+
for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) {
|
|
660
|
+
|
|
661
|
+
const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
|
|
662
|
+
const int plane_kernel_offset = threadIdx.z * num_y_input;
|
|
663
|
+
|
|
664
|
+
// Load inputs to shared memory
|
|
665
|
+
#pragma unroll
|
|
666
|
+
for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
|
|
667
|
+
const int input_offset = num_x_input * (j + plane_kernel_offset);
|
|
668
|
+
#pragma unroll
|
|
669
|
+
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
|
|
670
|
+
const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y);
|
|
671
|
+
s[i + input_offset] = eval.coeff(tensor_index);
|
|
672
|
+
}
|
|
673
|
+
}
|
|
674
|
+
|
|
675
|
+
__syncthreads();
|
|
676
|
+
|
|
677
|
+
// Convolution
|
|
678
|
+
const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
|
|
679
|
+
|
|
680
|
+
#pragma unroll
|
|
681
|
+
for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
|
|
682
|
+
#pragma unroll
|
|
683
|
+
for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
|
|
684
|
+
float result = 0.0f;
|
|
685
|
+
#pragma unroll
|
|
686
|
+
for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) {
|
|
687
|
+
const int kernel_offset = kernelSizeX * l;
|
|
688
|
+
const int input_offset = i + num_x_input * (j + l + plane_kernel_offset);
|
|
689
|
+
#pragma unroll
|
|
690
|
+
for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) {
|
|
691
|
+
result += s[k + input_offset] * kernel[k + kernel_offset];
|
|
692
|
+
}
|
|
693
|
+
}
|
|
694
|
+
const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
|
|
695
|
+
buffer[tensor_index] = result;
|
|
696
|
+
}
|
|
697
|
+
}
|
|
698
|
+
|
|
699
|
+
__syncthreads();
|
|
700
|
+
}
|
|
701
|
+
};
|
|
702
|
+
|
|
703
|
+
template <typename InputEvaluator, typename Index, typename InputDims>
|
|
704
|
+
__global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void EigenConvolutionKernel3D(
|
|
705
|
+
InputEvaluator eval,
|
|
706
|
+
const internal::IndexMapper<Index, InputDims, 3, InputEvaluator::Layout>
|
|
707
|
+
indexMapper,
|
|
708
|
+
const float* __restrict kernel, const size_t numPlanes, const size_t numX,
|
|
709
|
+
const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ,
|
|
710
|
+
const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY,
|
|
711
|
+
const size_t kernelSizeZ, float* buffer) {
|
|
712
|
+
#if defined(EIGEN_HIPCC)
|
|
713
|
+
HIP_DYNAMIC_SHARED(float, s)
|
|
714
|
+
#else
|
|
715
|
+
extern __shared__ float s[];
|
|
716
|
+
#endif
|
|
717
|
+
|
|
718
|
+
// Load inputs to shared memory
|
|
719
|
+
const int first_x = blockIdx.x * maxX;
|
|
720
|
+
const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
|
|
721
|
+
const int num_x_input = last_x - first_x + kernelSizeX;
|
|
722
|
+
|
|
723
|
+
const int first_y = blockIdx.y * maxY;
|
|
724
|
+
const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
|
|
725
|
+
const int num_y_input = last_y - first_y + kernelSizeY;
|
|
726
|
+
|
|
727
|
+
const int first_z = blockIdx.z * maxZ;
|
|
728
|
+
const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1;
|
|
729
|
+
const int num_z_input = last_z - first_z + kernelSizeZ;
|
|
730
|
+
|
|
731
|
+
for (int p = 0; p < numPlanes; ++p) {
|
|
732
|
+
|
|
733
|
+
const int plane_input_offset = indexMapper.mapGpuInputPlaneToTensorInputOffset(p);
|
|
734
|
+
const int plane_kernel_offset = 0;
|
|
735
|
+
|
|
736
|
+
for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) {
|
|
737
|
+
for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
|
|
738
|
+
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
|
|
739
|
+
const int tensor_index = plane_input_offset + indexMapper.mapGpuInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
|
|
740
|
+
s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index);
|
|
741
|
+
}
|
|
742
|
+
}
|
|
743
|
+
}
|
|
744
|
+
|
|
745
|
+
__syncthreads();
|
|
746
|
+
|
|
747
|
+
// Convolution
|
|
748
|
+
const int num_z_output = last_z - first_z + 1;
|
|
749
|
+
const int num_y_output = last_y - first_y + 1;
|
|
750
|
+
const int num_x_output = last_x - first_x + 1;
|
|
751
|
+
const int plane_output_offset = indexMapper.mapGpuOutputPlaneToTensorOutputOffset(p);
|
|
752
|
+
|
|
753
|
+
for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) {
|
|
754
|
+
for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
|
|
755
|
+
for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
|
|
756
|
+
float result = 0.0f;
|
|
757
|
+
for (int n = 0; n < kernelSizeZ; ++n) {
|
|
758
|
+
for (int m = 0; m < kernelSizeY; ++m) {
|
|
759
|
+
for (int l = 0; l < kernelSizeX; ++l) {
|
|
760
|
+
result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)];
|
|
761
|
+
}
|
|
762
|
+
}
|
|
763
|
+
}
|
|
764
|
+
const int tensor_index = plane_output_offset + indexMapper.mapGpuOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
|
|
765
|
+
buffer[tensor_index] = result;
|
|
766
|
+
}
|
|
767
|
+
}
|
|
768
|
+
}
|
|
769
|
+
__syncthreads();
|
|
770
|
+
}
|
|
771
|
+
};
|
|
772
|
+
|
|
773
|
+
|
|
774
|
+
|
|
775
|
+
template<typename Indices, typename InputArgType, typename KernelArgType>
|
|
776
|
+
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice>
|
|
777
|
+
{
|
|
778
|
+
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
|
|
779
|
+
|
|
780
|
+
static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value;
|
|
781
|
+
static const int NumKernelDims = internal::array_size<Indices>::value;
|
|
782
|
+
typedef typename XprType::Index Index;
|
|
783
|
+
typedef DSizes<Index, NumDims> Dimensions;
|
|
784
|
+
typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions;
|
|
785
|
+
|
|
786
|
+
enum {
|
|
787
|
+
IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
|
|
788
|
+
PacketAccess = false,
|
|
789
|
+
BlockAccess = false,
|
|
790
|
+
PreferBlockAccess = false,
|
|
791
|
+
Layout = TensorEvaluator<InputArgType, GpuDevice>::Layout,
|
|
792
|
+
CoordAccess = false, // to be implemented
|
|
793
|
+
RawAccess = false
|
|
794
|
+
};
|
|
795
|
+
|
|
796
|
+
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
|
|
797
|
+
typedef internal::TensorBlockNotImplemented TensorBlock;
|
|
798
|
+
//===--------------------------------------------------------------------===//
|
|
799
|
+
|
|
800
|
+
TensorEvaluator(const XprType& op, const GpuDevice& device)
|
|
801
|
+
: m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
|
|
802
|
+
{
|
|
803
|
+
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<InputArgType, GpuDevice>::Layout) == static_cast<int>(TensorEvaluator<KernelArgType, GpuDevice>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
804
|
+
|
|
805
|
+
const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
|
|
806
|
+
const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
|
|
807
|
+
|
|
808
|
+
m_dimensions = m_inputImpl.dimensions();
|
|
809
|
+
for (int i = 0; i < NumKernelDims; ++i) {
|
|
810
|
+
const Index index = op.indices()[i];
|
|
811
|
+
const Index input_dim = input_dims[index];
|
|
812
|
+
const Index kernel_dim = kernel_dims[i];
|
|
813
|
+
const Index result_dim = input_dim - kernel_dim + 1;
|
|
814
|
+
m_dimensions[index] = result_dim;
|
|
815
|
+
}
|
|
816
|
+
}
|
|
817
|
+
|
|
818
|
+
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
|
819
|
+
typedef typename PacketType<CoeffReturnType, GpuDevice>::type PacketReturnType;
|
|
820
|
+
typedef typename InputArgType::Scalar Scalar;
|
|
821
|
+
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
|
|
822
|
+
|
|
823
|
+
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
|
|
824
|
+
|
|
825
|
+
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
|
|
826
|
+
preloadKernel();
|
|
827
|
+
m_inputImpl.evalSubExprsIfNeeded(NULL);
|
|
828
|
+
if (data) {
|
|
829
|
+
executeEval(data);
|
|
830
|
+
return false;
|
|
831
|
+
} else {
|
|
832
|
+
m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
|
|
833
|
+
executeEval(m_buf);
|
|
834
|
+
return true;
|
|
835
|
+
}
|
|
836
|
+
}
|
|
837
|
+
|
|
838
|
+
EIGEN_STRONG_INLINE void cleanup() {
|
|
839
|
+
m_inputImpl.cleanup();
|
|
840
|
+
if (m_buf) {
|
|
841
|
+
m_device.deallocate(m_buf);
|
|
842
|
+
m_buf = NULL;
|
|
843
|
+
}
|
|
844
|
+
if (m_local_kernel) {
|
|
845
|
+
m_device.deallocate((void*)m_kernel);
|
|
846
|
+
m_local_kernel = false;
|
|
847
|
+
}
|
|
848
|
+
m_kernel = NULL;
|
|
849
|
+
}
|
|
850
|
+
|
|
851
|
+
EIGEN_STRONG_INLINE void preloadKernel() {
|
|
852
|
+
// Don't make a local copy of the kernel unless we have to (i.e. it's an
|
|
853
|
+
// expression that needs to be evaluated)
|
|
854
|
+
const Scalar* in_place = m_kernelImpl.data();
|
|
855
|
+
if (in_place) {
|
|
856
|
+
m_kernel = in_place;
|
|
857
|
+
m_local_kernel = false;
|
|
858
|
+
} else {
|
|
859
|
+
size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
|
|
860
|
+
Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
|
|
861
|
+
typedef TensorEvalToOp<const KernelArgType> EvalTo;
|
|
862
|
+
EvalTo evalToTmp(local, m_kernelArg);
|
|
863
|
+
const bool PacketAccess = internal::IsVectorizable<GpuDevice, KernelArgType>::value;
|
|
864
|
+
internal::TensorExecutor<const EvalTo, GpuDevice, PacketAccess>::run(evalToTmp, m_device);
|
|
865
|
+
|
|
866
|
+
m_kernel = local;
|
|
867
|
+
m_local_kernel = true;
|
|
868
|
+
}
|
|
869
|
+
}
|
|
870
|
+
|
|
871
|
+
static unsigned int ceil(unsigned int num, unsigned int denom) {
|
|
872
|
+
const unsigned int rounded_toward_zero = num / denom;
|
|
873
|
+
if (num > rounded_toward_zero * denom) {
|
|
874
|
+
return rounded_toward_zero + 1;
|
|
875
|
+
}
|
|
876
|
+
return rounded_toward_zero;
|
|
877
|
+
}
|
|
878
|
+
|
|
879
|
+
void executeEval(Scalar* data) const {
|
|
880
|
+
typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims;
|
|
881
|
+
|
|
882
|
+
const int maxSharedMem = m_device.sharedMemPerBlock();
|
|
883
|
+
const int maxThreadsPerBlock = m_device.maxGpuThreadsPerBlock();
|
|
884
|
+
const int maxBlocksPerProcessor = m_device.maxGpuThreadsPerMultiProcessor() / maxThreadsPerBlock;
|
|
885
|
+
const int numMultiProcessors = m_device.getNumGpuMultiProcessors();
|
|
886
|
+
const int warpSize = 32;
|
|
887
|
+
|
|
888
|
+
switch (NumKernelDims) {
|
|
889
|
+
case 1: {
|
|
890
|
+
const int kernel_size = m_kernelImpl.dimensions().TotalSize();
|
|
891
|
+
|
|
892
|
+
const int numX = dimensions()[m_indices[0]];
|
|
893
|
+
const int numP = dimensions().TotalSize() / numX;
|
|
894
|
+
int maxX;
|
|
895
|
+
dim3 block_size;
|
|
896
|
+
|
|
897
|
+
const int single_stride_dim =
|
|
898
|
+
static_cast<int>(Layout) == static_cast<int>(ColMajor)
|
|
899
|
+
? 0
|
|
900
|
+
: m_inputImpl.dimensions().rank() - 1;
|
|
901
|
+
if (m_indices[0] == single_stride_dim) {
|
|
902
|
+
// Maximum the reuse
|
|
903
|
+
const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32;
|
|
904
|
+
maxX = numext::mini<int>(inner_dim, numX);
|
|
905
|
+
const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP);
|
|
906
|
+
block_size.x = numext::mini(maxThreadsPerBlock, maxX);
|
|
907
|
+
block_size.y = numext::mini<int>(maxThreadsPerBlock / block_size.x, maxP);
|
|
908
|
+
}
|
|
909
|
+
else {
|
|
910
|
+
// Read as much as possible alongside the inner most dimension, that is the plane
|
|
911
|
+
const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar));
|
|
912
|
+
const int maxP = numext::mini<int>(inner_dim, numP);
|
|
913
|
+
maxX = numext::mini<int>(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX);
|
|
914
|
+
|
|
915
|
+
block_size.x = numext::mini(warpSize, maxX);
|
|
916
|
+
block_size.y = numext::mini<int>(maxThreadsPerBlock/block_size.x, maxP);
|
|
917
|
+
}
|
|
918
|
+
|
|
919
|
+
const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar);
|
|
920
|
+
gpu_assert(shared_mem <= maxSharedMem);
|
|
921
|
+
|
|
922
|
+
const int num_x_blocks = ceil(numX, maxX);
|
|
923
|
+
const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
|
|
924
|
+
const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks);
|
|
925
|
+
|
|
926
|
+
dim3 num_blocks(num_x_blocks, numext::mini<int>(num_y_blocks, ceil(numP, block_size.y)));
|
|
927
|
+
|
|
928
|
+
|
|
929
|
+
//cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
|
|
930
|
+
|
|
931
|
+
const array<Index, 1> indices(m_indices[0]);
|
|
932
|
+
const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]);
|
|
933
|
+
internal::IndexMapper<Index, InputDims, 1, Layout> indexMapper(
|
|
934
|
+
m_inputImpl.dimensions(), kernel_dims, indices);
|
|
935
|
+
switch(kernel_size) {
|
|
936
|
+
case 4: {
|
|
937
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
|
|
938
|
+
break;
|
|
939
|
+
}
|
|
940
|
+
case 7: {
|
|
941
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
|
|
942
|
+
break;
|
|
943
|
+
}
|
|
944
|
+
default: {
|
|
945
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
|
|
946
|
+
}
|
|
947
|
+
}
|
|
948
|
+
break;
|
|
949
|
+
}
|
|
950
|
+
|
|
951
|
+
case 2: {
|
|
952
|
+
const int idxX =
|
|
953
|
+
static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 1;
|
|
954
|
+
const int idxY =
|
|
955
|
+
static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 0;
|
|
956
|
+
const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
|
|
957
|
+
const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
|
|
958
|
+
|
|
959
|
+
const int numX = dimensions()[m_indices[idxX]];
|
|
960
|
+
const int numY = dimensions()[m_indices[idxY]];
|
|
961
|
+
const int numP = dimensions().TotalSize() / (numX*numY);
|
|
962
|
+
|
|
963
|
+
const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x));
|
|
964
|
+
|
|
965
|
+
// Snap maxX to warp size
|
|
966
|
+
int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32;
|
|
967
|
+
const int maxX = numext::mini<int>(inner_dim, numX);
|
|
968
|
+
const int maxY = numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY);
|
|
969
|
+
const int maxP = numext::mini<int>(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP);
|
|
970
|
+
|
|
971
|
+
dim3 block_size;
|
|
972
|
+
block_size.x = numext::mini(1024, maxX);
|
|
973
|
+
block_size.y = numext::mini<int>(1024/block_size.x, maxY);
|
|
974
|
+
block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxP);
|
|
975
|
+
|
|
976
|
+
const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar);
|
|
977
|
+
gpu_assert(shared_mem <= maxSharedMem);
|
|
978
|
+
|
|
979
|
+
const int num_x_blocks = ceil(numX, maxX);
|
|
980
|
+
const int num_y_blocks = ceil(numY, maxY);
|
|
981
|
+
const int blocksPerProcessor = numext::mini(maxBlocksPerProcessor, maxSharedMem / shared_mem);
|
|
982
|
+
const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks);
|
|
983
|
+
|
|
984
|
+
dim3 num_blocks(num_x_blocks, num_y_blocks, numext::mini<int>(num_z_blocks, ceil(numP, block_size.z)));
|
|
985
|
+
|
|
986
|
+
|
|
987
|
+
//cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
|
|
988
|
+
|
|
989
|
+
const array<Index, 2> indices(m_indices[idxX], m_indices[idxY]);
|
|
990
|
+
const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[idxX],
|
|
991
|
+
m_kernelImpl.dimensions()[idxY]);
|
|
992
|
+
internal::IndexMapper<Index, InputDims, 2, Layout> indexMapper(
|
|
993
|
+
m_inputImpl.dimensions(), kernel_dims, indices);
|
|
994
|
+
switch (kernel_size_x) {
|
|
995
|
+
case 4: {
|
|
996
|
+
switch (kernel_size_y) {
|
|
997
|
+
case 7: {
|
|
998
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
|
|
999
|
+
break;
|
|
1000
|
+
}
|
|
1001
|
+
default: {
|
|
1002
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
|
|
1003
|
+
break;
|
|
1004
|
+
}
|
|
1005
|
+
}
|
|
1006
|
+
break;
|
|
1007
|
+
}
|
|
1008
|
+
case 7: {
|
|
1009
|
+
switch (kernel_size_y) {
|
|
1010
|
+
case 4: {
|
|
1011
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
|
|
1012
|
+
break;
|
|
1013
|
+
}
|
|
1014
|
+
default: {
|
|
1015
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
|
|
1016
|
+
break;
|
|
1017
|
+
}
|
|
1018
|
+
}
|
|
1019
|
+
break;
|
|
1020
|
+
}
|
|
1021
|
+
default: {
|
|
1022
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Dynamic, Dynamic>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
|
|
1023
|
+
break;
|
|
1024
|
+
}
|
|
1025
|
+
}
|
|
1026
|
+
break;
|
|
1027
|
+
}
|
|
1028
|
+
|
|
1029
|
+
case 3: {
|
|
1030
|
+
const int idxX =
|
|
1031
|
+
static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 0 : 2;
|
|
1032
|
+
const int idxY =
|
|
1033
|
+
static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 1 : 1;
|
|
1034
|
+
const int idxZ =
|
|
1035
|
+
static_cast<int>(Layout) == static_cast<int>(ColMajor) ? 2 : 0;
|
|
1036
|
+
|
|
1037
|
+
const int kernel_size_x = m_kernelImpl.dimensions()[idxX];
|
|
1038
|
+
const int kernel_size_y = m_kernelImpl.dimensions()[idxY];
|
|
1039
|
+
const int kernel_size_z = m_kernelImpl.dimensions()[idxZ];
|
|
1040
|
+
|
|
1041
|
+
const int numX = dimensions()[m_indices[idxX]];
|
|
1042
|
+
const int numY = dimensions()[m_indices[idxY]];
|
|
1043
|
+
const int numZ = dimensions()[m_indices[idxZ]];
|
|
1044
|
+
const int numP = dimensions().TotalSize() / (numX*numY*numZ);
|
|
1045
|
+
|
|
1046
|
+
const int maxX = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX));
|
|
1047
|
+
const int maxY = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY));
|
|
1048
|
+
const int maxZ = numext::mini<int>(128, numext::mini<int>(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ));
|
|
1049
|
+
|
|
1050
|
+
dim3 block_size;
|
|
1051
|
+
block_size.x = numext::mini(32, maxX);
|
|
1052
|
+
block_size.y = numext::mini(32, maxY);
|
|
1053
|
+
block_size.z = numext::mini<int>(1024/(block_size.x*block_size.y), maxZ);
|
|
1054
|
+
dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ));
|
|
1055
|
+
|
|
1056
|
+
const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar);
|
|
1057
|
+
gpu_assert(shared_mem <= maxSharedMem);
|
|
1058
|
+
|
|
1059
|
+
//cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
|
|
1060
|
+
const array<Index, 3> indices(m_indices[idxX], m_indices[idxY],
|
|
1061
|
+
m_indices[idxZ]);
|
|
1062
|
+
const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[idxX],
|
|
1063
|
+
m_kernelImpl.dimensions()[idxY],
|
|
1064
|
+
m_kernelImpl.dimensions()[idxZ]);
|
|
1065
|
+
internal::IndexMapper<Index, InputDims, 3, Layout> indexMapper(
|
|
1066
|
+
m_inputImpl.dimensions(), kernel_dims, indices);
|
|
1067
|
+
|
|
1068
|
+
LAUNCH_GPU_KERNEL((EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims>), num_blocks, block_size, shared_mem, m_device, m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
|
|
1069
|
+
break;
|
|
1070
|
+
}
|
|
1071
|
+
|
|
1072
|
+
default: {
|
|
1073
|
+
EIGEN_STATIC_ASSERT((NumKernelDims >= 1 && NumKernelDims <= 3), THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE);
|
|
1074
|
+
}
|
|
1075
|
+
}
|
|
1076
|
+
}
|
|
1077
|
+
|
|
1078
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
1079
|
+
{
|
|
1080
|
+
eigen_assert(m_buf);
|
|
1081
|
+
eigen_assert(index < m_dimensions.TotalSize());
|
|
1082
|
+
return m_buf[index];
|
|
1083
|
+
}
|
|
1084
|
+
|
|
1085
|
+
template<int LoadMode>
|
|
1086
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const
|
|
1087
|
+
{
|
|
1088
|
+
eigen_assert(m_buf);
|
|
1089
|
+
eigen_assert(index < m_dimensions.TotalSize());
|
|
1090
|
+
return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index);
|
|
1091
|
+
}
|
|
1092
|
+
|
|
1093
|
+
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
|
|
1094
|
+
costPerCoeff(bool vectorized) const {
|
|
1095
|
+
// TODO(rmlarsen): FIXME: For now, this is just a copy of the CPU cost
|
|
1096
|
+
// model.
|
|
1097
|
+
const double kernel_size = m_kernelImpl.dimensions().TotalSize();
|
|
1098
|
+
// We ignore the use of fused multiply-add.
|
|
1099
|
+
const double convolve_compute_cost =
|
|
1100
|
+
TensorOpCost::AddCost<Scalar>() + TensorOpCost::MulCost<Scalar>();
|
|
1101
|
+
const double firstIndex_compute_cost =
|
|
1102
|
+
NumDims *
|
|
1103
|
+
(2 * TensorOpCost::AddCost<Index>() + 2 * TensorOpCost::MulCost<Index>() +
|
|
1104
|
+
TensorOpCost::DivCost<Index>());
|
|
1105
|
+
return TensorOpCost(0, 0, firstIndex_compute_cost, vectorized, PacketSize) +
|
|
1106
|
+
kernel_size * (m_inputImpl.costPerCoeff(vectorized) +
|
|
1107
|
+
m_kernelImpl.costPerCoeff(vectorized) +
|
|
1108
|
+
TensorOpCost(0, 0, convolve_compute_cost, vectorized,
|
|
1109
|
+
PacketSize));
|
|
1110
|
+
}
|
|
1111
|
+
|
|
1112
|
+
private:
|
|
1113
|
+
// No assignment (copies are needed by the kernels)
|
|
1114
|
+
TensorEvaluator& operator = (const TensorEvaluator&);
|
|
1115
|
+
|
|
1116
|
+
TensorEvaluator<InputArgType, GpuDevice> m_inputImpl;
|
|
1117
|
+
TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl;
|
|
1118
|
+
KernelArgType m_kernelArg;
|
|
1119
|
+
Indices m_indices;
|
|
1120
|
+
Dimensions m_dimensions;
|
|
1121
|
+
Scalar* m_buf;
|
|
1122
|
+
const Scalar* m_kernel;
|
|
1123
|
+
bool m_local_kernel;
|
|
1124
|
+
|
|
1125
|
+
const GpuDevice& m_device;
|
|
1126
|
+
};
|
|
1127
|
+
#endif
|
|
1128
|
+
|
|
1129
|
+
|
|
1130
|
+
} // end namespace Eigen
|
|
1131
|
+
|
|
1132
|
+
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
|