pygeodesy 25.11.5__py2.py3-none-any.whl → 25.12.31__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pygeodesy/__init__.py +46 -25
- pygeodesy/__main__.py +1 -1
- pygeodesy/albers.py +1 -1
- pygeodesy/angles.py +960 -0
- pygeodesy/auxilats/_CX_4.py +1 -1
- pygeodesy/auxilats/_CX_6.py +1 -1
- pygeodesy/auxilats/_CX_8.py +1 -1
- pygeodesy/auxilats/_CX_Rs.py +1 -1
- pygeodesy/auxilats/__init__.py +2 -2
- pygeodesy/auxilats/__main__.py +1 -1
- pygeodesy/auxilats/auxAngle.py +7 -8
- pygeodesy/auxilats/auxDLat.py +1 -1
- pygeodesy/auxilats/auxDST.py +1 -1
- pygeodesy/auxilats/auxLat.py +1 -1
- pygeodesy/auxilats/auxily.py +1 -1
- pygeodesy/azimuthal.py +6 -5
- pygeodesy/basics.py +14 -10
- pygeodesy/booleans.py +1 -1
- pygeodesy/cartesianBase.py +7 -7
- pygeodesy/clipy.py +1 -1
- pygeodesy/constants.py +29 -24
- pygeodesy/css.py +1 -1
- pygeodesy/datums.py +1 -1
- pygeodesy/deprecated/__init__.py +1 -1
- pygeodesy/deprecated/bases.py +1 -1
- pygeodesy/deprecated/classes.py +14 -7
- pygeodesy/deprecated/consterns.py +1 -1
- pygeodesy/deprecated/datum.py +1 -1
- pygeodesy/deprecated/functions.py +1 -1
- pygeodesy/deprecated/nvector.py +1 -1
- pygeodesy/deprecated/rhumbBase.py +1 -1
- pygeodesy/deprecated/rhumbaux.py +1 -1
- pygeodesy/deprecated/rhumbsolve.py +1 -1
- pygeodesy/deprecated/rhumbx.py +1 -1
- pygeodesy/dms.py +1 -1
- pygeodesy/ecef.py +1 -1
- pygeodesy/ecefLocals.py +1 -1
- pygeodesy/elevations.py +1 -1
- pygeodesy/ellipsoidalBase.py +1 -1
- pygeodesy/ellipsoidalBaseDI.py +1 -1
- pygeodesy/ellipsoidalExact.py +1 -1
- pygeodesy/ellipsoidalGeodSolve.py +1 -1
- pygeodesy/ellipsoidalKarney.py +1 -1
- pygeodesy/ellipsoidalNvector.py +1 -1
- pygeodesy/ellipsoidalVincenty.py +1 -1
- pygeodesy/ellipsoids.py +30 -17
- pygeodesy/elliptic.py +1 -1
- pygeodesy/epsg.py +1 -1
- pygeodesy/errors.py +8 -4
- pygeodesy/etm.py +1 -1
- pygeodesy/fmath.py +19 -14
- pygeodesy/formy.py +251 -10
- pygeodesy/frechet.py +1 -1
- pygeodesy/fstats.py +1 -1
- pygeodesy/fsums.py +41 -29
- pygeodesy/gars.py +1 -1
- pygeodesy/geod3solve.py +489 -0
- pygeodesy/geodesici.py +9 -8
- pygeodesy/geodesicw.py +1 -1
- pygeodesy/geodesicx/_C4_24.py +1 -1
- pygeodesy/geodesicx/_C4_27.py +1 -1
- pygeodesy/geodesicx/_C4_30.py +1 -1
- pygeodesy/geodesicx/__init__.py +2 -2
- pygeodesy/geodesicx/__main__.py +1 -1
- pygeodesy/geodesicx/gx.py +1 -1
- pygeodesy/geodesicx/gxarea.py +54 -24
- pygeodesy/geodesicx/gxbases.py +1 -1
- pygeodesy/geodesicx/gxline.py +1 -1
- pygeodesy/geodsolve.py +73 -104
- pygeodesy/geohash.py +1 -1
- pygeodesy/geoids.py +1 -1
- pygeodesy/hausdorff.py +1 -1
- pygeodesy/heights.py +1 -1
- pygeodesy/internals.py +1 -1
- pygeodesy/interns.py +3 -3
- pygeodesy/iters.py +1 -1
- pygeodesy/karney.py +152 -151
- pygeodesy/ktm.py +1 -1
- pygeodesy/latlonBase.py +1 -1
- pygeodesy/lazily.py +24 -13
- pygeodesy/lcc.py +1 -1
- pygeodesy/ltp.py +1 -1
- pygeodesy/ltpTuples.py +1 -1
- pygeodesy/mgrs.py +3 -3
- pygeodesy/named.py +15 -10
- pygeodesy/namedTuples.py +1 -1
- pygeodesy/nvectorBase.py +1 -1
- pygeodesy/osgr.py +1 -1
- pygeodesy/points.py +1 -1
- pygeodesy/props.py +6 -4
- pygeodesy/resections.py +1 -1
- pygeodesy/rhumb/__init__.py +8 -6
- pygeodesy/rhumb/aux_.py +1 -1
- pygeodesy/rhumb/bases.py +1 -1
- pygeodesy/rhumb/ekx.py +1 -1
- pygeodesy/rhumb/solve.py +91 -84
- pygeodesy/simplify.py +1 -1
- pygeodesy/solveBase.py +72 -49
- pygeodesy/sphericalBase.py +1 -1
- pygeodesy/sphericalNvector.py +1 -1
- pygeodesy/sphericalTrigonometry.py +1 -1
- pygeodesy/streprs.py +6 -4
- pygeodesy/trf.py +2 -4
- pygeodesy/triaxials/__init__.py +70 -0
- pygeodesy/triaxials/bases.py +966 -0
- pygeodesy/triaxials/conformal3.py +617 -0
- pygeodesy/triaxials/triaxial3.py +968 -0
- pygeodesy/{triaxials.py → triaxials/triaxial5.py} +353 -781
- pygeodesy/units.py +1 -1
- pygeodesy/unitsBase.py +1 -1
- pygeodesy/ups.py +2 -3
- pygeodesy/utily.py +17 -14
- pygeodesy/utm.py +1 -1
- pygeodesy/utmups.py +1 -1
- pygeodesy/utmupsBase.py +1 -1
- pygeodesy/vector2d.py +1 -1
- pygeodesy/vector3d.py +1 -1
- pygeodesy/vector3dBase.py +1 -1
- pygeodesy/webmercator.py +1 -1
- pygeodesy/wgrs.py +1 -1
- {pygeodesy-25.11.5.dist-info → pygeodesy-25.12.31.dist-info}/METADATA +28 -21
- pygeodesy-25.12.31.dist-info/RECORD +125 -0
- pygeodesy-25.11.5.dist-info/RECORD +0 -119
- {pygeodesy-25.11.5.dist-info → pygeodesy-25.12.31.dist-info}/WHEEL +0 -0
- {pygeodesy-25.11.5.dist-info → pygeodesy-25.12.31.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,617 @@
|
|
|
1
|
+
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
|
|
4
|
+
u'''I{Jacobi Conformal projection} classes L{Conformal3}, L{Conformal3B} and L{Conformal3Sphere} on
|
|
5
|
+
triaxial ellipsoids and spheres using L{Ang}, L{Deg}, L{Rad} lat-, longitude, heading and meridian
|
|
6
|
+
(convergence) angles.
|
|
7
|
+
|
|
8
|
+
Transcoded to pure Python from I{Karney}'s GeographicLib 2.7 C++ class U{Conformal3<https://
|
|
9
|
+
GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Triaxial_1_1Conformal3.html>}.
|
|
10
|
+
|
|
11
|
+
Copyright (C) U{Charles Karney<malto:Karney@Alum.MIT.edu>} (2024-2025) and licensed under the MIT/X11
|
|
12
|
+
License. For more information, see the U{GeographicLib 2.7<https://GeographicLib.SourceForge.io/>}
|
|
13
|
+
documentation.
|
|
14
|
+
'''
|
|
15
|
+
# make sure int/int division yields float quotient, see .basics
|
|
16
|
+
from __future__ import division as _; del _ # noqa: E702 ;
|
|
17
|
+
|
|
18
|
+
from pygeodesy.angles import Ang, _Ang3Tuple, isAng, Property_RO
|
|
19
|
+
from pygeodesy.basics import _copysign, signBit
|
|
20
|
+
from pygeodesy.constants import EPS, INF, NAN, PI_2, \
|
|
21
|
+
_copysign_1_0, _over, _1_over, remainder, \
|
|
22
|
+
_0_0, _0_01, _0_5, _0_75, _1_0, _2_0, _4_0
|
|
23
|
+
from pygeodesy.constants import _16_0 # PYCHOK used!
|
|
24
|
+
from pygeodesy.fmath import hypot1, _ALL_LAZY, Fmt
|
|
25
|
+
from pygeodesy.interns import _DMAIN_, _scale_
|
|
26
|
+
# from pygeodesy.lazily import _ALL_LAZY # from .fmath
|
|
27
|
+
# from pygeodesy.named import _NamedTuple, _Pass # from .namedTuples
|
|
28
|
+
from pygeodesy.namedTuples import Vector2Tuple, _Pass
|
|
29
|
+
# from pygeodesy.props import Property_RO # from .triaxials.angles
|
|
30
|
+
# from pygeodesy.streprs import Fmt # from .fmath
|
|
31
|
+
from pygeodesy.triaxials.bases import _bet_, Conformal5Tuple, LLK, _llk_, \
|
|
32
|
+
_MAXIT, _omg_, TriaxialError, \
|
|
33
|
+
_Triaxial3Base, Vector3d
|
|
34
|
+
from pygeodesy.triaxials.triaxial3 import Triaxial3B
|
|
35
|
+
from pygeodesy.units import Easting, Northing, Radians, Radius_, Scalar
|
|
36
|
+
from pygeodesy.utily import sincos2
|
|
37
|
+
# from pygeodesy.vector3d import Vector3d # from .triaxials.bases
|
|
38
|
+
|
|
39
|
+
from math import atan, atanh, exp, fabs, log, sinh, sqrt
|
|
40
|
+
|
|
41
|
+
__all__ = _ALL_LAZY.triaxials_conformal3
|
|
42
|
+
__version__ = '25.11.29'
|
|
43
|
+
|
|
44
|
+
_gam_ = 'gam'
|
|
45
|
+
_LOG2MIN = log(EPS) * _2_0
|
|
46
|
+
# _N = (log(_4_0) - log(PI)) / (PI_2 - log(_4_0))
|
|
47
|
+
_NLOG2 = -log(_2_0)
|
|
48
|
+
# _B = exp(_N * PI_2) - pow(_4_0, _N)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class BetOmgGam5Tuple(_Ang3Tuple):
|
|
52
|
+
'''5-Tuple C{(bet, omg, gam, scale, llk)} with I{ellipsoidal} lat-
|
|
53
|
+
C{bet}, longitude C{omg} and meridian convergence C{gam} all
|
|
54
|
+
L{Ang}les, C{scale} I{and kind} C{llk} I{set to} C{LLK.CONFORMAL}.
|
|
55
|
+
'''
|
|
56
|
+
_Names_ = (_bet_, _omg_, _gam_, _scale_, _llk_)
|
|
57
|
+
_Units_ = ( Ang, Ang, _Pass, Scalar, _Pass)
|
|
58
|
+
|
|
59
|
+
def __new__(cls, bet, omg, gam, scale=NAN, llk=None, unit=None, **kwds): # **iteration_name
|
|
60
|
+
args = bet, omg, gam, scale, (llk or LLK.CONFORMAL)
|
|
61
|
+
self = _Ang3Tuple.__new__(cls, args, **kwds)
|
|
62
|
+
return self.toUnit(unit) if unit else self
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
class Conformal3(_Triaxial3Base):
|
|
66
|
+
'''I{Jacobi Conformal} projection of triaxial ellipsoid using class L{Ang}
|
|
67
|
+
lat- and longitudes.
|
|
68
|
+
|
|
69
|
+
@see: L{Triaxial<triaxials.triaxial5.Triaxial>} for details.
|
|
70
|
+
'''
|
|
71
|
+
@Property_RO
|
|
72
|
+
def _a_b(self):
|
|
73
|
+
return self.a / self.b
|
|
74
|
+
|
|
75
|
+
@Property_RO
|
|
76
|
+
def _a2_b(self):
|
|
77
|
+
return self.a * self._a_b # == self.b * self._a2_b2
|
|
78
|
+
|
|
79
|
+
@Property_RO
|
|
80
|
+
def _b_a(self):
|
|
81
|
+
return self.b / self.a # = sqrt(self._b2_a2)
|
|
82
|
+
|
|
83
|
+
@Property_RO
|
|
84
|
+
def _b_c(self):
|
|
85
|
+
return self.b / self.c
|
|
86
|
+
|
|
87
|
+
@Property_RO
|
|
88
|
+
def _c_b(self):
|
|
89
|
+
return self.c / self.b # = sqrt(self._c2_b2)
|
|
90
|
+
|
|
91
|
+
@Property_RO
|
|
92
|
+
def _c2_b(self):
|
|
93
|
+
return self.c * self._c_b # == self.b * self._c2_b2
|
|
94
|
+
|
|
95
|
+
@Property_RO
|
|
96
|
+
def _C3S(self):
|
|
97
|
+
'''(INTERNAL) Cache the I{equivalent Conformal Sphere}.
|
|
98
|
+
'''
|
|
99
|
+
return self.equi3Sphere(*self.xyQ2, name=self.name)
|
|
100
|
+
|
|
101
|
+
def equi3Sphere(self, x, y, **name):
|
|
102
|
+
'''Get this projection's I{equivalent Conformal Sphere}.
|
|
103
|
+
|
|
104
|
+
@arg x: Quadrant x length, easting (C{meter}).
|
|
105
|
+
@arg y: Quadrant y length, northing (C{meter}).
|
|
106
|
+
|
|
107
|
+
@return: The C{Comformal3Sphere} of this projection.
|
|
108
|
+
|
|
109
|
+
@see: Classes L{Conformal3Sphere<triaxials.spheres.Conformal3Sphere>} and
|
|
110
|
+
L{ConformalSphere<triaxials.triaxial5.ConformalSphere>} and I{Karney}'s
|
|
111
|
+
GeographicLib 2.7 C++ U{Triaxial::Conformal3<https://GeographicLib.
|
|
112
|
+
SourceForge.io/C++/doc/classGeographicLib_1_1Triaxial_1_1Conformal3.html>}
|
|
113
|
+
for more information.
|
|
114
|
+
'''
|
|
115
|
+
x, y = self.xyQ2
|
|
116
|
+
# Find C{b, k2, kp2} s.t. C{b * K(kp2) = x},
|
|
117
|
+
# C{b * K(k2) = y} and C{x * K(k2) - y * K(kp2) = 0}.
|
|
118
|
+
_EF = self._Elliptic
|
|
119
|
+
_xy = x < y
|
|
120
|
+
if _xy:
|
|
121
|
+
x, y = y, x
|
|
122
|
+
# Now x >= y, k2 <= 1/2
|
|
123
|
+
if x != y:
|
|
124
|
+
s = x + y
|
|
125
|
+
ny = _over(y, s)
|
|
126
|
+
if ny:
|
|
127
|
+
nx = _over(x, s)
|
|
128
|
+
# assert nx != ny
|
|
129
|
+
# Find initial guess assume K(k2) = pi/2, so K(kp2) = nx/ny * pi/2.
|
|
130
|
+
# Invert using approximate k(K) given in https://arxiv.org/abs/2505.17159v4
|
|
131
|
+
KK = _over(nx, ny) * PI_2
|
|
132
|
+
# k2 = _16_0 / pow(exp(_N * KK) - _B, _2_0 / _N)
|
|
133
|
+
# Alternatively using KK = 1/2*log(16/kp) A+S 17.3.26
|
|
134
|
+
k2 = min(_0_5, exp(-KK * _2_0) * _16_0) # Make sure guess is sane
|
|
135
|
+
logk2 = log(k2)
|
|
136
|
+
if logk2 > _LOG2MIN:
|
|
137
|
+
# Solve for log(k2) to preserve relative accuracy for tiny k2.
|
|
138
|
+
def _k2s2(logk2):
|
|
139
|
+
k2 = exp(logk2)
|
|
140
|
+
kp2 = _1_0 - k2
|
|
141
|
+
xS = _EF(kp2, 0, k2)
|
|
142
|
+
yS = _EF(k2, 0, kp2)
|
|
143
|
+
f = nx * yS.cK - ny * xS.cK
|
|
144
|
+
fp = (nx * (yS.cE - kp2 * yS.cK) +
|
|
145
|
+
ny * (xS.cE - k2 * xS.cK)) / (kp2 * _2_0)
|
|
146
|
+
return f, fp
|
|
147
|
+
|
|
148
|
+
logk2, _, _, _ = _root4(_k2s2, 0, logk2, _LOG2MIN, _NLOG2)
|
|
149
|
+
k2 = exp(logk2)
|
|
150
|
+
# otherwise accept the asymptotic result
|
|
151
|
+
kp2 = _1_0 - k2
|
|
152
|
+
else:
|
|
153
|
+
k2, kp2 = _0_0, _1_0
|
|
154
|
+
else:
|
|
155
|
+
k2 = kp2 = _0_5
|
|
156
|
+
# b * K(kp2) = x
|
|
157
|
+
# b * K(k2) = y
|
|
158
|
+
|
|
159
|
+
K = _EF(k2, 0, kp2).cK
|
|
160
|
+
b = _over(y, K)
|
|
161
|
+
if _xy:
|
|
162
|
+
k2, kp2 = kp2, k2
|
|
163
|
+
return Conformal3Sphere(b, k2, kp2, **name)
|
|
164
|
+
|
|
165
|
+
def forwardBetOmg(self, bet, omg, M=False, **unit_name):
|
|
166
|
+
'''Compute the projection to this conformal triaxial.
|
|
167
|
+
|
|
168
|
+
@arg bet: Ellipsoidal latitude (C{Ang} or B{C{unit}}).
|
|
169
|
+
@arg omg: Ellipsoidal longitude (C{Ang} or B{C{unit}})..
|
|
170
|
+
@kwarg M: If C{True}, compute and include the scale (C{bool}).
|
|
171
|
+
@kwarg unit_name: Optional C{B{unit}=}L{Radians} and C{B{name}=NN} (C{str}).
|
|
172
|
+
|
|
173
|
+
@return: A L{Conformal5Tuple}C{(x, y, z, scale, llk)} with C{z = INT0}
|
|
174
|
+
I{always} and C{scale} if C{B{M}=True}, otherwise C{scale = NAN}.
|
|
175
|
+
'''
|
|
176
|
+
bet, omg, name = _bet_omg_name(bet, omg, **unit_name)
|
|
177
|
+
m = _1_over(self._invScale(bet, omg)) if M else NAN
|
|
178
|
+
return Conformal5Tuple(self._x(omg), self._y(bet), scale=m, **name)
|
|
179
|
+
|
|
180
|
+
def forwardOther(self, other, bet, omg, M=False, **unit_name):
|
|
181
|
+
'''Compute the projection to an other conformal triaxial.
|
|
182
|
+
|
|
183
|
+
@arg other: A conformal triaxial (C{Conformal3}).
|
|
184
|
+
@arg bet: Ellipsoidal latitude (C{Ang} or B{C{unit}}).
|
|
185
|
+
@arg omg: Ellipsoidal longitude (C{Ang} or B{C{unit}}).
|
|
186
|
+
@kwarg M: If C{True}, compute and include the scale (C{bool}).
|
|
187
|
+
@kwarg unit_name: Optional C{B{unit}=}L{Radians} and C{B{name}=NN} (C{str}).
|
|
188
|
+
|
|
189
|
+
@return: A L{BetOmgGam5Tuple}C{(bet, omg, gam, scale, llk)} with C{scale}
|
|
190
|
+
if C{B{M}=True}, otherwise C{scale = NAN}.
|
|
191
|
+
'''
|
|
192
|
+
if not isinstance(other, Conformal3):
|
|
193
|
+
raise TriaxialError(other=other)
|
|
194
|
+
bet, omg, name = _bet_omg_name(bet, omg, **unit_name)
|
|
195
|
+
m = other._C3S.b / self._C3S.b
|
|
196
|
+
ct, v, ma = self.forwardSphere3(bet, omg, M=M)
|
|
197
|
+
ct = Vector3d(ct).times(m)
|
|
198
|
+
bet, omg, gam, mb, _ = other.reverseSphere(ct, dir3d=v, M=M)
|
|
199
|
+
if M:
|
|
200
|
+
m *= _over(ma, mb)
|
|
201
|
+
else:
|
|
202
|
+
m = NAN
|
|
203
|
+
return BetOmgGam5Tuple(bet, omg, gam, m, **name)
|
|
204
|
+
|
|
205
|
+
def forwardSphere3(self, bet, omg, M=False, **unit_name):
|
|
206
|
+
'''Compute the projection to and direction on the equivalent I{Conformal
|
|
207
|
+
Sphere}.
|
|
208
|
+
|
|
209
|
+
@arg bet: Ellipsoidal latitude (C{Ang} or B{C{unit}}).
|
|
210
|
+
@arg omg: Ellipsoidal longitude (C{Ang} or B{C{unit}}).
|
|
211
|
+
@kwarg M: If C{True}, compute and include the scale (C{bool}).
|
|
212
|
+
@kwarg unit_name: Optional C{B{unit}=}L{Radians} and C{B{name}=NN} (C{str}).
|
|
213
|
+
|
|
214
|
+
@return: 3-Tuple C{(cartesian, direction, scale)} with a C{cartesian}
|
|
215
|
+
L{Cartesian5Tuple}C{(x, y, z, h, llk)} on and C{direction} a
|
|
216
|
+
C{Vector3d} due North and tangent to the I{Conformal Sphere}
|
|
217
|
+
and C{scale} if C{B{M}=True}, otherwise C{scale = NAN}.
|
|
218
|
+
'''
|
|
219
|
+
if M:
|
|
220
|
+
bet, omg, _ = _bet_omg_name(bet, omg, **unit_name)
|
|
221
|
+
x, y, _, _, _ = self.forwardBetOmg(bet, omg, M=False, **unit_name)
|
|
222
|
+
S = self._C3S
|
|
223
|
+
bets = _invF(S._yE, y / S.b)
|
|
224
|
+
omgs = _invF(S._xE, x / S.b).shift(-1)
|
|
225
|
+
ct, dir3d = S.forwardBetOmgAlp2(bets, omgs, Ang.N(), **unit_name)
|
|
226
|
+
if M:
|
|
227
|
+
ma = self._invScale(bet, omg)
|
|
228
|
+
mb = _invScale(S, bets, omgs)
|
|
229
|
+
m = self._sphScale(ma, mb)
|
|
230
|
+
else:
|
|
231
|
+
m = NAN
|
|
232
|
+
return ct, dir3d, m
|
|
233
|
+
|
|
234
|
+
def _invScale(self, bet, omg):
|
|
235
|
+
# scale helper
|
|
236
|
+
return _invScale(self, bet, omg.shift(+1))
|
|
237
|
+
|
|
238
|
+
def reverseBetOmg(self, x_cf, y=None, M=False, **unit_name):
|
|
239
|
+
'''Reverse a projection from this conformal triaxial.
|
|
240
|
+
|
|
241
|
+
@arg x_cf: Easting (C{scalar}) or a conformal projection (C{Conformal5Tuple}).
|
|
242
|
+
@kwarg y: Northing (C{scalar}), required if B{C{x_cf}} is C{scalar},
|
|
243
|
+
ignored otherwise.
|
|
244
|
+
@kwarg M: If C{True}, compute and include the scale (C{bool}).
|
|
245
|
+
@kwarg unit_name: Optional C{B{unit}=}L{Radians} and C{B{name}=NN} (C{str}).
|
|
246
|
+
|
|
247
|
+
@return: A L{BetOmgGam5Tuple}C{(bet, omg, gam, scale, llk)} with
|
|
248
|
+
C{gam} set to C{None} and C{scale} only if C{B{M}=True},
|
|
249
|
+
otherwise C{scale is NAN}.
|
|
250
|
+
'''
|
|
251
|
+
x, y = _cf2en(x_cf, y)
|
|
252
|
+
bet = _invPi(self._yE, y / self._c2_b).mod(self._c_b)
|
|
253
|
+
omg = _invPi(self._xE, x / self._a2_b).mod(self._a_b).shift(-1)
|
|
254
|
+
m = _1_over(self._invScale(bet, omg)) if M else NAN
|
|
255
|
+
return BetOmgGam5Tuple(bet, omg, None, m, **unit_name)
|
|
256
|
+
|
|
257
|
+
def reverseOther(self, other, beto, omgo, M=False, **unit_name):
|
|
258
|
+
'''Reverse a projection from an other conformal triaxial.
|
|
259
|
+
|
|
260
|
+
@arg other: A conformal triaxial (C{Conformal3}).
|
|
261
|
+
@arg beto: Ellipsoidal latitude on the B{C{other}} triaxial
|
|
262
|
+
(C{Ang} or B{C{unit}}).
|
|
263
|
+
@arg omgo: Ellipsoidal longitude on the B{C{other}} triaxial
|
|
264
|
+
(C{Ang} or B{C{unit}}).
|
|
265
|
+
@kwarg M: If C{True}, compute and include the scale (C{bool}).
|
|
266
|
+
@kwarg unit_name: Optional C{B{unit}=}L{Radians} and C{B{name}=NN} (C{str}).
|
|
267
|
+
|
|
268
|
+
@return: A L{BetOmgGam5Tuple}C{(bet, omg, gam, scale, llk)} with
|
|
269
|
+
C{scale} if C{B{M}=True}, otherwise C{scale = NAN}.
|
|
270
|
+
'''
|
|
271
|
+
if not isinstance(other, Conformal3):
|
|
272
|
+
raise TriaxialError(other=other)
|
|
273
|
+
bet, omg, gam, m, _ = other.forwardOther(self, beto, omgo, M=M)
|
|
274
|
+
m = _1_over(m) if M else NAN
|
|
275
|
+
return BetOmgGam5Tuple(bet, omg, _Neg(gam), m, **unit_name)
|
|
276
|
+
|
|
277
|
+
def reverseSphere(self, x_ct, y=None, z=None, dir3d=None, M=False, **unit_name):
|
|
278
|
+
'''Reverse a projection from this C{Conformal Sphere} to this triaxial.
|
|
279
|
+
|
|
280
|
+
@arg x_ct: X component (C{scalar}) of or a cartesian on the C{Conformal
|
|
281
|
+
Sphere} (C{Cartesian5Tuple}).
|
|
282
|
+
@kwarg y: Y component (C{scalar}), required if B{C{x_ct}} is C{scalar},
|
|
283
|
+
ignored otherwise.
|
|
284
|
+
@kwarg z: Z component (C{scalar}), like B{C{y}}.
|
|
285
|
+
@kwarg dir3d: The direction (C{Vector3d} or C{None}), reference.
|
|
286
|
+
@kwarg M: If C{True}, compute and include the scale (C{bool}).
|
|
287
|
+
@kwarg unit_name: Optional C{B{unit}=}L{Radians} and C{B{name}=NN} (C{str}).
|
|
288
|
+
|
|
289
|
+
@return: A L{BetOmgGam5Tuple}C{(bet, omg, gam, scale, llk)} with
|
|
290
|
+
C{scale} only if C{B{M}=True}, otherwise C{scale = NAN}.
|
|
291
|
+
'''
|
|
292
|
+
S = self._C3S
|
|
293
|
+
bets, omgs, alp, _, _ = S.reverseBetOmgAlp(x_ct, y, z, dir3d=dir3d)
|
|
294
|
+
_ = Ang._norm(bets, omgs, alp, alt=bool(S.k2 == 0))
|
|
295
|
+
x = S.b * _F(S._xE, omgs.shift(+1))
|
|
296
|
+
y = S.b * _F(S._yE, bets)
|
|
297
|
+
bet, omg, _, _, _ = self.reverseBetOmg(x, y, M=False)
|
|
298
|
+
if M:
|
|
299
|
+
mb = _invScale(S, bets, omgs)
|
|
300
|
+
ma = _invScale(S, bet, omg)
|
|
301
|
+
m = self._sphScale(ma, mb)
|
|
302
|
+
else:
|
|
303
|
+
m = NAN
|
|
304
|
+
return BetOmgGam5Tuple(bet, omg, _Neg(alp), m, **unit_name)
|
|
305
|
+
|
|
306
|
+
def _sphScale(self, ma, mb):
|
|
307
|
+
'''(INTERNAL) Compute the C{scale}.
|
|
308
|
+
'''
|
|
309
|
+
return _over(mb, ma) if ma and mb else self._sphScale_m
|
|
310
|
+
|
|
311
|
+
@Property_RO
|
|
312
|
+
def _sphScale_m(self):
|
|
313
|
+
'''(INTERNAL) Cache the constant C{scale}.
|
|
314
|
+
'''
|
|
315
|
+
e = sqrt(self.e2)
|
|
316
|
+
|
|
317
|
+
def _h1sg(atan_):
|
|
318
|
+
sg = sinh(e * atan_(e))
|
|
319
|
+
return hypot1(sg) + sg
|
|
320
|
+
|
|
321
|
+
k2, kp2 = self._k2_kp2
|
|
322
|
+
if not kp2: # oblate pole
|
|
323
|
+
m = self._c_b * _h1sg(atanh)
|
|
324
|
+
elif not k2: # prolate pole
|
|
325
|
+
m = _over(self._a_b, _h1sg(atan))
|
|
326
|
+
else: # trixial umbilical
|
|
327
|
+
S = self._C3S
|
|
328
|
+
s = _over(S.k2 * S.kp2, k2 * kp2)
|
|
329
|
+
m = (sqrt(s) * (self.b / S.b)) if s > 0 else _0_0
|
|
330
|
+
return m
|
|
331
|
+
|
|
332
|
+
def _x(self, omg): # degrees?
|
|
333
|
+
'''(INTERNAL) Compute an C{x} projection easting.
|
|
334
|
+
'''
|
|
335
|
+
omg = omg.shift(+1)
|
|
336
|
+
_, c, n = omg.scn3
|
|
337
|
+
if (n or signBit(c)) and not self.k2:
|
|
338
|
+
x = NAN
|
|
339
|
+
else:
|
|
340
|
+
x = _Pi(self._xE, omg.mod(self._b_a))
|
|
341
|
+
x *= self._a2_b
|
|
342
|
+
return x
|
|
343
|
+
|
|
344
|
+
@Property_RO
|
|
345
|
+
def xyQ2(self):
|
|
346
|
+
'''Get the quadrant length in x and y direction (Vector2Tuple{x, y}).
|
|
347
|
+
'''
|
|
348
|
+
return Vector2Tuple(self._a2_b * self._xE.cPi,
|
|
349
|
+
self._c2_b * self._yE.cPi,
|
|
350
|
+
name=Conformal3.xyQ2.name)
|
|
351
|
+
|
|
352
|
+
def _y(self, bet): # degrees?
|
|
353
|
+
'''(INTERNAL) Compute a C{y} projection northing.
|
|
354
|
+
'''
|
|
355
|
+
_, c, n = bet.scn3
|
|
356
|
+
if (n or signBit(c)) and not self.kp2:
|
|
357
|
+
y = NAN
|
|
358
|
+
else:
|
|
359
|
+
y = _Pi(self._yE, bet.mod(self._b_c))
|
|
360
|
+
y *= self._c2_b
|
|
361
|
+
return y
|
|
362
|
+
|
|
363
|
+
|
|
364
|
+
class Conformal3B(Conformal3):
|
|
365
|
+
'''I{Jacobi Conformal projection} on a triaxial ellipsoid
|
|
366
|
+
specified by its middle semi-axis and shape.
|
|
367
|
+
|
|
368
|
+
@see: L{Conformal3} for details and more information.
|
|
369
|
+
'''
|
|
370
|
+
def __init__(self, b, e2=_0_0, k2=_1_0, kp2=_0_0, **name):
|
|
371
|
+
'''New L{Conformal3B} triaxial.
|
|
372
|
+
|
|
373
|
+
@note: Use C{B{b}=radius} and C{B{e2}=0} for a conformal
|
|
374
|
+
I{spherical} projection.
|
|
375
|
+
|
|
376
|
+
@see: L{Conformal<triaxials.triaxial5.Conformal.__init__>}.
|
|
377
|
+
'''
|
|
378
|
+
self._init_abc3_e2_k2_kp2(Radius_(b=b), e2, k2, kp2, **name)
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
class Conformal3Sphere(Triaxial3B): # note C{Triaxial3}!
|
|
382
|
+
'''I{Jacobi Conformal projection} on a I{spherical} triaxial.
|
|
383
|
+
|
|
384
|
+
@see: Method L{equiv3Sphere<triaxials.conformal3.Conformal3.equi3Sphere>}.
|
|
385
|
+
'''
|
|
386
|
+
def __init__(self, radius, k2=_1_0, kp2=_0_0, **name):
|
|
387
|
+
'''New, L{Conformal3Sphere} instance.
|
|
388
|
+
|
|
389
|
+
@see: L{Triaxial3<triaxials.triaxial3.Triaxial3>} for more information.
|
|
390
|
+
'''
|
|
391
|
+
self._init_abc3_e2_k2_kp2(Radius_(radius), 0, k2, kp2, **name)
|
|
392
|
+
# self._xE = self._Elliptic(kp2, 0, k2, **name) # _Triaxial3Base._xE
|
|
393
|
+
# self._yE = self._Elliptic(k2, 0, kp2, **name) # _Triaxial3Base._yE
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+
def _bet_omg_name(bet, omg, unit=Radians, **name):
|
|
397
|
+
'''(INTERNAL) Get C{(bet, omg, name)}.
|
|
398
|
+
'''
|
|
399
|
+
return (Ang.fromScalar(bet, unit=unit),
|
|
400
|
+
Ang.fromScalar(omg, unit=unit), name)
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
def _cf2en(x_cf, y):
|
|
404
|
+
'''(INTERNAL) Get easting C{x} and notrthing C{y}.
|
|
405
|
+
'''
|
|
406
|
+
return x_cf[:2] if isinstance(x_cf, Conformal5Tuple) else (
|
|
407
|
+
Easting(x_cf), Northing(y))
|
|
408
|
+
|
|
409
|
+
|
|
410
|
+
def _F(eF, phi): # -> float
|
|
411
|
+
'''(INTERNAL) Elliptic function C{F(phi)}.
|
|
412
|
+
'''
|
|
413
|
+
s, c, n = phi.scn3
|
|
414
|
+
if (n or signBit(c)) and not eF.kp2:
|
|
415
|
+
p = NAN
|
|
416
|
+
else:
|
|
417
|
+
p = eF.fF(s, c, eF.fDelta(s, c))
|
|
418
|
+
if n:
|
|
419
|
+
p += eF.cK * n * _4_0
|
|
420
|
+
return p
|
|
421
|
+
|
|
422
|
+
|
|
423
|
+
def _invF(eF, x): # -> Ang
|
|
424
|
+
'''(INTERNAL) Inverse elliptic function C{F(x)}.
|
|
425
|
+
'''
|
|
426
|
+
r, y = _invRy2(eF, eF.cK, x)
|
|
427
|
+
if y: # solve eF.fF(phi) = y for phi
|
|
428
|
+
def _fF2(phi): # -> pair<real, real>
|
|
429
|
+
s, c = sincos2(phi)
|
|
430
|
+
f = eF.fF(s, c, eF.fDelta(s, c))
|
|
431
|
+
fp = sqrt(eF.kp2 + c**2 * eF.k2)
|
|
432
|
+
return f, _1_over(fp)
|
|
433
|
+
|
|
434
|
+
z = fabs(y)
|
|
435
|
+
z, _, _, _ = _root4(_fF2, z, z * PI_2 / eF.cK)
|
|
436
|
+
r += Ang.fromRadians(_copysign(z, y))
|
|
437
|
+
return r
|
|
438
|
+
|
|
439
|
+
|
|
440
|
+
def _invPi(eF, x): # -> Ang
|
|
441
|
+
'''(INTERNAL) Inverse elliptic function C{Pi(x)}.
|
|
442
|
+
'''
|
|
443
|
+
r, y = _invRy2(eF, eF.cPi, x)
|
|
444
|
+
if y: # solve eF.fPi(phi) = y for phi
|
|
445
|
+
def _fPi2(phi): # -> pair<real, real>
|
|
446
|
+
s, c = sincos2(phi)
|
|
447
|
+
f = eF.fPi(s, c, eF.fDelta(s, c))
|
|
448
|
+
a2 = eF.alpha2
|
|
449
|
+
fp = (_1_0 - c**2 * a2) if a2 < 0 else \
|
|
450
|
+
(eF.alphap2 + s**2 * a2)
|
|
451
|
+
fp *= sqrt(eF.kp2 + c**2 * eF.k2)
|
|
452
|
+
return f, _1_over(fp)
|
|
453
|
+
|
|
454
|
+
z = fabs(y)
|
|
455
|
+
z, _, _, _ = _root4(_fPi2, z, z * PI_2 / eF.cPi)
|
|
456
|
+
r += Ang.fromRadians(_copysign(z, y))
|
|
457
|
+
return r
|
|
458
|
+
|
|
459
|
+
|
|
460
|
+
def _invRy2(eF, eF_c, x):
|
|
461
|
+
# helper for C{_invF} and C{_invPi}
|
|
462
|
+
if eF.kp2:
|
|
463
|
+
n = eF_c * _2_0
|
|
464
|
+
y = remainder(x, n)
|
|
465
|
+
n = round((x - y) / n) * _2_0
|
|
466
|
+
else: # eF_c == N-/INF
|
|
467
|
+
y, n = x, _0_0
|
|
468
|
+
if not y:
|
|
469
|
+
y, n = 0, (n if n else y) # signed 0
|
|
470
|
+
elif fabs(y) == eF_c:
|
|
471
|
+
y, n = 0, (_copysign_1_0(y) + n)
|
|
472
|
+
return Ang.cardinal(n), y
|
|
473
|
+
|
|
474
|
+
|
|
475
|
+
def _invScale(triax, bet, omg):
|
|
476
|
+
# helper for triaxial, sphere scale
|
|
477
|
+
k2, kp2 = triax._k2_kp2
|
|
478
|
+
return sqrt(k2 * bet.c**2 + kp2 * omg.c**2)
|
|
479
|
+
|
|
480
|
+
|
|
481
|
+
def _Neg(ang):
|
|
482
|
+
return (-ang) if isAng(ang) else (ang or None)
|
|
483
|
+
|
|
484
|
+
|
|
485
|
+
def _Pi(eF, phi): # -> float
|
|
486
|
+
'''(INTERNAL) Elliptic function C{Pi(phi)}.
|
|
487
|
+
'''
|
|
488
|
+
s, c, n = phi.scn3
|
|
489
|
+
if (n or signBit(c)) and not eF.kp2:
|
|
490
|
+
p = NAN
|
|
491
|
+
else:
|
|
492
|
+
p = eF.fPi(s, c, eF.fDelta(s, c))
|
|
493
|
+
if n:
|
|
494
|
+
p += eF.cPi * n * _4_0
|
|
495
|
+
return p
|
|
496
|
+
|
|
497
|
+
|
|
498
|
+
def _root4(_fp2, z, x, xa=_0_0, xb=PI_2, xscale=1, zscale=1, s=1, tol=EPS): # int s
|
|
499
|
+
'''(INTERNAL) Solve v = _fp2(x) - z = 0.
|
|
500
|
+
'''
|
|
501
|
+
k = b = C = 0
|
|
502
|
+
if xa < xb and xa <= x <= xb:
|
|
503
|
+
# p = PI_2 * 0 #???
|
|
504
|
+
# def _fp2z(x):
|
|
505
|
+
# f, fp = _fp2(x)
|
|
506
|
+
# f -= z
|
|
507
|
+
# # "DAT ", x, f, fp
|
|
508
|
+
# return f
|
|
509
|
+
# a, _, b = map1(_fp2z, xa, x, xb)
|
|
510
|
+
# if (a * b) > 0:
|
|
511
|
+
# raise TriaxalError('"DATBAD")
|
|
512
|
+
# tol = max(tol, EPS) # tol if tol > 0 else EPS
|
|
513
|
+
vtol = tol * zscale * _0_01
|
|
514
|
+
xtol = pow(tol, _0_75) * xscale
|
|
515
|
+
oldv = oldx = olddx = INF
|
|
516
|
+
for k in range(1, _MAXIT):
|
|
517
|
+
# TODO: 20 60 -90 180 127.4974 24.6254 2.4377
|
|
518
|
+
v, vp = _fp2(x)
|
|
519
|
+
v -= z
|
|
520
|
+
va = fabs(v)
|
|
521
|
+
dx = _over(-v, vp)
|
|
522
|
+
# "XX ", k, (xa - p), (x - p), (xb - p), dx, (x + dx - p), v, vp
|
|
523
|
+
if not (va > (0 if k < 2 else vtol)):
|
|
524
|
+
C = 1 # k, va
|
|
525
|
+
break
|
|
526
|
+
elif (v * s) > 0:
|
|
527
|
+
xb = min(xb, x)
|
|
528
|
+
else:
|
|
529
|
+
xa = max(xa, x)
|
|
530
|
+
x += dx
|
|
531
|
+
dxa = fabs(dx)
|
|
532
|
+
if x < xa or x > xb or va > oldv or \
|
|
533
|
+
(k > 2 and dxa > olddx):
|
|
534
|
+
b += 1 # k, xa, x, xb
|
|
535
|
+
x = (xa + xb) * _0_5
|
|
536
|
+
if x == oldx:
|
|
537
|
+
C = 3 # k, x, dx
|
|
538
|
+
break
|
|
539
|
+
elif not dxa > xtol:
|
|
540
|
+
C = 2 # k, dx, xtol
|
|
541
|
+
break
|
|
542
|
+
# "GAPS ", k, dx, (x - xa), (xb - x), oldx, x, (oldx - x)
|
|
543
|
+
oldx = x
|
|
544
|
+
oldv = va
|
|
545
|
+
olddx = dxa * _0_5
|
|
546
|
+
else:
|
|
547
|
+
t = Fmt.no_convergence(dx, xtol)
|
|
548
|
+
raise TriaxialError(x=x, xa=xa, xb=xb, txt=t)
|
|
549
|
+
else:
|
|
550
|
+
x = NAN
|
|
551
|
+
return x, k, b, C
|
|
552
|
+
|
|
553
|
+
|
|
554
|
+
if __name__ == _DMAIN_:
|
|
555
|
+
|
|
556
|
+
from pygeodesy import Degrees, printf
|
|
557
|
+
from pygeodesy.triaxials import Triaxials
|
|
558
|
+
|
|
559
|
+
# <https://GeographicLib.SourceForge.io/C++/doc/Cart3Convert.1.html>
|
|
560
|
+
T = Conformal3(Triaxials.WGS84_3)
|
|
561
|
+
printf(T)
|
|
562
|
+
# name='WGS84_3', a=6378171.36, b=6378101.609999999, c=6356751.84, ...
|
|
563
|
+
t = T.forwardBetOmg(Ang.fromDegrees(33.3), Ang.fromDegrees(44.4), M=True)
|
|
564
|
+
printf((t.x, t.y, t.scale))
|
|
565
|
+
# (-5077802.461853351, 3922572.0186951873, 1.197034384522207)
|
|
566
|
+
# -5077732.396 3922571.859 1.1970343759 C++
|
|
567
|
+
t = T.reverseBetOmg(*t[:2], M=True)
|
|
568
|
+
printf((t.bet.degrees0, t.omg.degrees0, t.scale))
|
|
569
|
+
# (33.47654394192169, 44.39937131735643, 1.1994622456567812)
|
|
570
|
+
# 33.30000000 44.40000000 1.1970343759 C++
|
|
571
|
+
|
|
572
|
+
T = Conformal3(Triaxials.WGS84_3r) # rounded
|
|
573
|
+
printf(T)
|
|
574
|
+
# name='WGS84_3r', a=6378172, b=6378102, c=6356752, ...
|
|
575
|
+
t = T.forwardBetOmg(Degrees(33.3), Degrees(44.4), M=True)
|
|
576
|
+
printf((t.x, t.y, t.scale))
|
|
577
|
+
# (-5077802.439189989, 3922571.859124643, 1.197034375926918)
|
|
578
|
+
# -5077732.396 3922571.859 1.1970343759 C++
|
|
579
|
+
t = T.reverseBetOmg(*t[:2], M=True)
|
|
580
|
+
printf((t.bet.degrees0, t.omg.degrees0, t.scale))
|
|
581
|
+
# (33.47654654826102, 44.39937131735643, 1.1994622731246583)
|
|
582
|
+
# 33.30000000 44.40000000 1.1970343759 C++
|
|
583
|
+
|
|
584
|
+
c = 6378137 * (1 - 1 / (298257223563 / 1000000000))
|
|
585
|
+
T = Conformal3(6378172, 6378102, c)
|
|
586
|
+
printf(T)
|
|
587
|
+
# name='', a=6378172, b=6378102, c=6356752.314245179, ...
|
|
588
|
+
t = T.forwardBetOmg(Degrees(33.3), Degrees(44.4), M=True)
|
|
589
|
+
printf((t.x, t.y, t.scale))
|
|
590
|
+
# (-5077802.461853351, 3922572.0186951873, 1.197034384522207)
|
|
591
|
+
# -5077732.396 3922571.859 1.1970343759 C++
|
|
592
|
+
t = T.reverseBetOmg(*t[:2], M=True)
|
|
593
|
+
printf((t.bet.degrees0, t.omg.degrees0, t.scale))
|
|
594
|
+
# (33.47654394192169, 44.39937131735643, 1.1994622456567812)
|
|
595
|
+
# 33.30000000 44.40000000 1.1970343759 C++
|
|
596
|
+
|
|
597
|
+
# **) MIT License
|
|
598
|
+
#
|
|
599
|
+
# Copyright (C) 2025-2026 -- mrJean1 at Gmail -- All Rights Reserved.
|
|
600
|
+
#
|
|
601
|
+
# Permission is hereby granted, free of charge, to any person obtaining a
|
|
602
|
+
# copy of this software and associated documentation files (the "Software"),
|
|
603
|
+
# to deal in the Software without restriction, including without limitation
|
|
604
|
+
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
605
|
+
# and/or sell copies of the Software, and to permit persons to whom the
|
|
606
|
+
# Software is furnished to do so, subject to the following conditions:
|
|
607
|
+
#
|
|
608
|
+
# The above copyright notice and this permission notice shall be included
|
|
609
|
+
# in all copies or substantial portions of the Software.
|
|
610
|
+
#
|
|
611
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
612
|
+
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
613
|
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
614
|
+
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
615
|
+
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
616
|
+
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
617
|
+
# OTHER DEALINGS IN THE SOFTWARE.
|