pyg-nightly 2.8.0.dev20251207__py3-none-any.whl → 2.8.0.dev20251228__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.8.0.dev20251207
3
+ Version: 2.8.0.dev20251228
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=xLp2y4tiJZkUb7Dx3dCe910wgKw_TajSy9j05aRaVlA,2292
1
+ torch_geometric/__init__.py,sha256=-xv3lcOpuRxUnKabcb_QGt-Xd7EwoV4wW-uLk5CFs8M,2292
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -274,7 +274,7 @@ torch_geometric/llm/models/__init__.py,sha256=Xb2GacStLOYCAu34NNzG-zog-zapXh1asl
274
274
  torch_geometric/llm/models/g_retriever.py,sha256=BPERbaekEyD0e7VUNy5PJlzfAqRkiYFwzWe3QEokgfs,9112
275
275
  torch_geometric/llm/models/git_mol.py,sha256=m1YJb6Xb2i6j9wEqHzqE4YBWMr9i1CJpMp6T-E24fsA,12680
276
276
  torch_geometric/llm/models/glem.py,sha256=GlL_I63g-_5eTycSGRj720YntldQ-CQ351RaDPc6XAU,16674
277
- torch_geometric/llm/models/llm.py,sha256=039mq9rZBZMyZW5rYj0fMP5kl9RJAI7N-oJyC4Mf2Gs,18122
277
+ torch_geometric/llm/models/llm.py,sha256=oE44cEym52vPyazwhdUIU7ZKX9uBCKYkOLSMBIDmEeE,18116
278
278
  torch_geometric/llm/models/llm_judge.py,sha256=qhc8hmIPNhcfLVRyBVk7jQW7ncoIb9QYw7rcsGAIpyg,6457
279
279
  torch_geometric/llm/models/molecule_gpt.py,sha256=RWoP4RMsoRzZtuedPCLNCfooqibCqxkuAhH-pyek9No,7641
280
280
  torch_geometric/llm/models/protein_mpnn.py,sha256=SwTgafSbI2KJ-yqzn0trZtVWLmfo0_kPEaWSNJUCt70,12266
@@ -621,7 +621,7 @@ torch_geometric/utils/_sort_edge_index.py,sha256=Z5F9xcRp3hKzTiTlc2gqYufs8QLDSI4
621
621
  torch_geometric/utils/_spmm.py,sha256=2fBcllo-ywstsd8mfoMwSP0tyI_lBU033P1Yd9Bhuz8,5743
622
622
  torch_geometric/utils/_subgraph.py,sha256=GcOGNUcVe97tifuQyi5qBZ88A_Wo3-o17l9xCSIsau4,18456
623
623
  torch_geometric/utils/_to_dense_adj.py,sha256=hl1sboUBvED5Er66bqLms4VdmxKA-7Y3ozJIR-YIAUc,3606
624
- torch_geometric/utils/_to_dense_batch.py,sha256=-K5NjjfvjKYKJQ3kXgNIDR7lwMJ_GGISI45b50IGMvY,4582
624
+ torch_geometric/utils/_to_dense_batch.py,sha256=OljZOthnClH3LzAksIiU7xlhrs6QRIpOMaZILCo6uAI,4585
625
625
  torch_geometric/utils/_train_test_split_edges.py,sha256=KnBDgnaKuJYTHUOIlvFtzvkHUe-93DG3ckST4-wOERM,3569
626
626
  torch_geometric/utils/_tree_decomposition.py,sha256=ZtpjPQJgXbQWtSWjo-Fmhrov0DGO69TfQb9oBFvZ6dM,5304
627
627
  torch_geometric/utils/_trim_to_layer.py,sha256=cauOEzMJJK4w9BC-Pg1bHVncBYqG9XxQex3rn10BFjc,8339
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
654
654
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
655
655
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
656
656
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
657
- pyg_nightly-2.8.0.dev20251207.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
- pyg_nightly-2.8.0.dev20251207.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
- pyg_nightly-2.8.0.dev20251207.dist-info/METADATA,sha256=7--dxsFICfvxVX9XjyHCtQH6Z-3JPX5v_naH5Bay55Y,63680
660
- pyg_nightly-2.8.0.dev20251207.dist-info/RECORD,,
657
+ pyg_nightly-2.8.0.dev20251228.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
+ pyg_nightly-2.8.0.dev20251228.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
+ pyg_nightly-2.8.0.dev20251228.dist-info/METADATA,sha256=-NaP_Pgz_aVvAP79-2F2Man6XUxWpUuRl4U2wv9Hmz8,63680
660
+ pyg_nightly-2.8.0.dev20251228.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.8.0.dev20251207'
34
+ __version__ = '2.8.0.dev20251228'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -43,7 +43,7 @@ def get_llm_kwargs(required_memory: int, dtype=torch.dtype) -> Dict[str, Any]:
43
43
  }
44
44
  kwargs['low_cpu_mem_usage'] = True
45
45
  kwargs['device_map'] = 'auto'
46
- kwargs['torch_dtype'] = dtype
46
+ kwargs['dtype'] = dtype
47
47
 
48
48
  return kwargs
49
49
 
@@ -123,8 +123,8 @@ def to_dense_batch(
123
123
  x, idx = x[mask], idx[mask]
124
124
 
125
125
  size = [batch_size * max_num_nodes] + list(x.size())[1:]
126
- out = torch.as_tensor(fill_value, device=x.device)
127
- out = out.to(x.dtype).repeat(size)
126
+ out = torch.as_tensor(fill_value, device=x.device, dtype=x.dtype)
127
+ out = out.repeat(size)
128
128
  out[idx] = x
129
129
  out = out.view([batch_size, max_num_nodes] + list(x.size())[1:])
130
130