pyg-nightly 2.7.0.dev20251031__py3-none-any.whl → 2.7.0.dev20251101__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyg-nightly might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20251031
3
+ Version: 2.7.0.dev20251101
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=QiSp5I-qmE7LznK_oirFMHoLFkb4ZSMY7aRGvSS87eE,2292
1
+ torch_geometric/__init__.py,sha256=RqO8G1pJjRlPfkJmybH_Jth5W7eYVFllFtiTOgZSDBk,2292
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -151,7 +151,7 @@ torch_geometric/datasets/shapenet.py,sha256=tn3HiQQAr6lxHrqxfOVaAtl40guwFYTXWCbS
151
151
  torch_geometric/datasets/shrec2016.py,sha256=cTLhctbqE0EUEvKddJFhPzDb1oLKXOth4O_WzsWtyMk,6323
152
152
  torch_geometric/datasets/snap_dataset.py,sha256=deJvB6cpIQ3bu_pcWoqgEo1-Kl_NcFi7ZSUci645X0U,9481
153
153
  torch_geometric/datasets/suite_sparse.py,sha256=eqjH4vAUq872qdk3YdLkZSwlu6r7HHpTgK0vEVGmY1s,3278
154
- torch_geometric/datasets/tag_dataset.py,sha256=jslijGCh37ip2YkrQLyvbk-1QRJ3yqFpmzuQSxckXrE,19402
154
+ torch_geometric/datasets/tag_dataset.py,sha256=TwZMDxnFGjl4vPosZIp1mmqMXjxcMt3WcgeiTeKMjuU,19788
155
155
  torch_geometric/datasets/taobao.py,sha256=CUcZpbWsNTasevflO8zqP0YvENy89P7wpKS4MHaDJ6Q,4170
156
156
  torch_geometric/datasets/teeth3ds.py,sha256=hZvhcq9lsQENNFr5hk50w2T3CgxE_tlnQfrCgN6uIDQ,9919
157
157
  torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDCvABc,4632
@@ -319,7 +319,7 @@ torch_geometric/nn/fx.py,sha256=PDtaHJAgodh4xf8FNl4fVxPGZJDbRaq3Q9z8qb1DNNI,1606
319
319
  torch_geometric/nn/glob.py,sha256=MdHjcUlHmFmTevzwND1_x7dXXJPzIDTBJRGOrGdZ8dQ,1088
320
320
  torch_geometric/nn/inits.py,sha256=_8FqacCLPz5Ft2zB5s6dtKGTKWtfrLyCLLuv1QvyKjk,2457
321
321
  torch_geometric/nn/lr_scheduler.py,sha256=_FWdIgGPDSZCK1TZFWHSP5RfpY83Kyhlz7Ja6YHPQVo,8937
322
- torch_geometric/nn/model_hub.py,sha256=2x8uN80BwW2pdBGtU4LNF-8pUtGZMxr0btQCVSgeKwA,9550
322
+ torch_geometric/nn/model_hub.py,sha256=RNzpkm1D2pJTO3hwicoxxEcummd4ukTTw5anxqVT2mc,9561
323
323
  torch_geometric/nn/module_dict.py,sha256=c6ThkEfju01ZyhERA8rZgr9oawVfwqOBMrdG3bzSsro,2377
324
324
  torch_geometric/nn/parameter_dict.py,sha256=RJnid_I8jXTjIoDKVr0Ej2E2XKOLxH_lXxLeEHB_wUg,2412
325
325
  torch_geometric/nn/reshape.py,sha256=WJvc_oPPcfsFqN97i4oJRMor17ar5IPeIu8BevKIyIk,426
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
654
654
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
655
655
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
656
656
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
657
- pyg_nightly-2.7.0.dev20251031.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
- pyg_nightly-2.7.0.dev20251031.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
- pyg_nightly-2.7.0.dev20251031.dist-info/METADATA,sha256=6dbDyVNNRGJkd_eBVdtQMmXqW4-ms1yR-yZgBfl_484,63680
660
- pyg_nightly-2.7.0.dev20251031.dist-info/RECORD,,
657
+ pyg_nightly-2.7.0.dev20251101.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
+ pyg_nightly-2.7.0.dev20251101.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
+ pyg_nightly-2.7.0.dev20251101.dist-info/METADATA,sha256=FbjnIf8Wxp05LM1B6WTUoGMH01w2sx2vIfSeD4tDc6o,63680
660
+ pyg_nightly-2.7.0.dev20251101.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20251031'
34
+ __version__ = '2.7.0.dev20251101'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -137,10 +137,13 @@ class TAGDataset(InMemoryDataset):
137
137
  self.token_on_disk = token_on_disk
138
138
  self.tokenize_batch_size = tokenize_batch_size
139
139
  self._token = self.tokenize_graph(self.tokenize_batch_size)
140
- self._llm_explanation_token = self.tokenize_graph(
141
- self.tokenize_batch_size, text_type='llm_explanation')
142
- self._all_token = self.tokenize_graph(self.tokenize_batch_size,
143
- text_type='all')
140
+ self._llm_explanation_token: Dict[str, Tensor] = {}
141
+ self._all_token: Dict[str, Tensor] = {}
142
+ if self.name in self.llm_explanation_id:
143
+ self._llm_explanation_token = self.tokenize_graph(
144
+ self.tokenize_batch_size, text_type='llm_explanation')
145
+ self._all_token = self.tokenize_graph(self.tokenize_batch_size,
146
+ text_type='all')
144
147
  self.__num_classes__ = dataset.num_classes
145
148
 
146
149
  @property
@@ -170,14 +173,16 @@ class TAGDataset(InMemoryDataset):
170
173
 
171
174
  @property
172
175
  def llm_explanation_token(self) -> Dict[str, Tensor]:
173
- if self._llm_explanation_token is None: # lazy load
176
+ if self._llm_explanation_token is None and \
177
+ self.name in self.llm_explanation_id:
174
178
  self._llm_explanation_token = self.tokenize_graph(
175
179
  text_type='llm_explanation')
176
180
  return self._llm_explanation_token
177
181
 
178
182
  @property
179
183
  def all_token(self) -> Dict[str, Tensor]:
180
- if self._all_token is None: # lazy load
184
+ if self._all_token is None and \
185
+ self.name in self.llm_explanation_id:
181
186
  self._all_token = self.tokenize_graph(text_type='all')
182
187
  return self._all_token
183
188
 
@@ -230,13 +235,15 @@ class TAGDataset(InMemoryDataset):
230
235
  filename='node-text.csv.gz',
231
236
  log=True)
232
237
  self.text = list(read_csv(raw_text_path)['text'])
233
- print('downloading llm explanations')
234
- llm_explanation_path = download_google_url(
235
- id=self.llm_explanation_id[self.name], folder=f'{self.root}/raw',
236
- filename='node-gpt-response.csv.gz', log=True)
237
- self.llm_explanation = list(read_csv(llm_explanation_path)['text'])
238
- print('downloading llm predictions')
239
- fs.cp(f'{self.llm_prediction_url}/{self.name}.csv', self.raw_dir)
238
+ if self.name in self.llm_explanation_id:
239
+ print('downloading llm explanations')
240
+ llm_explanation_path = download_google_url(
241
+ id=self.llm_explanation_id[self.name],
242
+ folder=f'{self.root}/raw', filename='node-gpt-response.csv.gz',
243
+ log=True)
244
+ self.llm_explanation = list(read_csv(llm_explanation_path)['text'])
245
+ print('downloading llm predictions')
246
+ fs.cp(f'{self.llm_prediction_url}/{self.name}.csv', self.raw_dir)
240
247
 
241
248
  def process(self) -> None:
242
249
  # process Title and Abstraction
@@ -276,6 +283,14 @@ class TAGDataset(InMemoryDataset):
276
283
  for i, pred in enumerate(preds):
277
284
  pl[i][:len(pred)] = torch.tensor(
278
285
  pred[:self.llm_prediction_topk], dtype=torch.long) + 1
286
+
287
+ if self.llm_explanation is None or pl is None:
288
+ raise ValueError(
289
+ "The TAGDataset only have ogbn-arxiv LLM explanations"
290
+ "and predictions in default. The llm explanation and"
291
+ "prediction of each node is not specified.Please pass in"
292
+ "'llm_explanation' and 'llm_prediction' when"
293
+ "convert your dataset to Text Attribute Graph Dataset")
279
294
  elif self.name in self.llm_explanation_id:
280
295
  self.download()
281
296
  else:
@@ -283,13 +298,6 @@ class TAGDataset(InMemoryDataset):
283
298
  'The dataset is not ogbn-arxiv,'
284
299
  'please pass in your llm explanation list to `llm_explanation`'
285
300
  'and llm prediction list to `llm_prediction`')
286
- if self.llm_explanation is None or pl is None:
287
- raise ValueError(
288
- "The TAGDataset only have ogbn-arxiv LLM explanations"
289
- "and predictions in default. The llm explanation and"
290
- "prediction of each node is not specified."
291
- "Please pass in 'llm_explanation' and 'llm_prediction' when"
292
- "convert your dataset to Text Attribute Graph Dataset")
293
301
 
294
302
  def save_node_text(self, text: List[str]) -> None:
295
303
  node_text_path = osp.join(self.root, 'raw', 'node-text.csv.gz')
@@ -144,10 +144,10 @@ class PyGModelHubMixin(ModelHubMixin):
144
144
  revision,
145
145
  cache_dir,
146
146
  force_download,
147
- proxies,
148
- resume_download,
149
147
  local_files_only,
150
148
  token,
149
+ proxies=None,
150
+ resume_download=False,
151
151
  dataset_name='',
152
152
  model_name='',
153
153
  map_location='cpu',