pyg-nightly 2.7.0.dev20251030__py3-none-any.whl → 2.7.0.dev20251101__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of pyg-nightly might be problematic. Click here for more details.
- {pyg_nightly-2.7.0.dev20251030.dist-info → pyg_nightly-2.7.0.dev20251101.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20251030.dist-info → pyg_nightly-2.7.0.dev20251101.dist-info}/RECORD +7 -7
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/tag_dataset.py +28 -20
- torch_geometric/nn/model_hub.py +2 -2
- {pyg_nightly-2.7.0.dev20251030.dist-info → pyg_nightly-2.7.0.dev20251101.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20251030.dist-info → pyg_nightly-2.7.0.dev20251101.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20251030.dist-info → pyg_nightly-2.7.0.dev20251101.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: pyg-nightly
|
|
3
|
-
Version: 2.7.0.
|
|
3
|
+
Version: 2.7.0.dev20251101
|
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
|
1
|
+
torch_geometric/__init__.py,sha256=RqO8G1pJjRlPfkJmybH_Jth5W7eYVFllFtiTOgZSDBk,2292
|
|
2
2
|
torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
|
|
3
3
|
torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
|
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
|
@@ -151,7 +151,7 @@ torch_geometric/datasets/shapenet.py,sha256=tn3HiQQAr6lxHrqxfOVaAtl40guwFYTXWCbS
|
|
|
151
151
|
torch_geometric/datasets/shrec2016.py,sha256=cTLhctbqE0EUEvKddJFhPzDb1oLKXOth4O_WzsWtyMk,6323
|
|
152
152
|
torch_geometric/datasets/snap_dataset.py,sha256=deJvB6cpIQ3bu_pcWoqgEo1-Kl_NcFi7ZSUci645X0U,9481
|
|
153
153
|
torch_geometric/datasets/suite_sparse.py,sha256=eqjH4vAUq872qdk3YdLkZSwlu6r7HHpTgK0vEVGmY1s,3278
|
|
154
|
-
torch_geometric/datasets/tag_dataset.py,sha256=
|
|
154
|
+
torch_geometric/datasets/tag_dataset.py,sha256=TwZMDxnFGjl4vPosZIp1mmqMXjxcMt3WcgeiTeKMjuU,19788
|
|
155
155
|
torch_geometric/datasets/taobao.py,sha256=CUcZpbWsNTasevflO8zqP0YvENy89P7wpKS4MHaDJ6Q,4170
|
|
156
156
|
torch_geometric/datasets/teeth3ds.py,sha256=hZvhcq9lsQENNFr5hk50w2T3CgxE_tlnQfrCgN6uIDQ,9919
|
|
157
157
|
torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDCvABc,4632
|
|
@@ -319,7 +319,7 @@ torch_geometric/nn/fx.py,sha256=PDtaHJAgodh4xf8FNl4fVxPGZJDbRaq3Q9z8qb1DNNI,1606
|
|
|
319
319
|
torch_geometric/nn/glob.py,sha256=MdHjcUlHmFmTevzwND1_x7dXXJPzIDTBJRGOrGdZ8dQ,1088
|
|
320
320
|
torch_geometric/nn/inits.py,sha256=_8FqacCLPz5Ft2zB5s6dtKGTKWtfrLyCLLuv1QvyKjk,2457
|
|
321
321
|
torch_geometric/nn/lr_scheduler.py,sha256=_FWdIgGPDSZCK1TZFWHSP5RfpY83Kyhlz7Ja6YHPQVo,8937
|
|
322
|
-
torch_geometric/nn/model_hub.py,sha256=
|
|
322
|
+
torch_geometric/nn/model_hub.py,sha256=RNzpkm1D2pJTO3hwicoxxEcummd4ukTTw5anxqVT2mc,9561
|
|
323
323
|
torch_geometric/nn/module_dict.py,sha256=c6ThkEfju01ZyhERA8rZgr9oawVfwqOBMrdG3bzSsro,2377
|
|
324
324
|
torch_geometric/nn/parameter_dict.py,sha256=RJnid_I8jXTjIoDKVr0Ej2E2XKOLxH_lXxLeEHB_wUg,2412
|
|
325
325
|
torch_geometric/nn/reshape.py,sha256=WJvc_oPPcfsFqN97i4oJRMor17ar5IPeIu8BevKIyIk,426
|
|
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
|
654
654
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
|
655
655
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
|
656
656
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
|
657
|
-
pyg_nightly-2.7.0.
|
|
658
|
-
pyg_nightly-2.7.0.
|
|
659
|
-
pyg_nightly-2.7.0.
|
|
660
|
-
pyg_nightly-2.7.0.
|
|
657
|
+
pyg_nightly-2.7.0.dev20251101.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
|
658
|
+
pyg_nightly-2.7.0.dev20251101.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
|
659
|
+
pyg_nightly-2.7.0.dev20251101.dist-info/METADATA,sha256=FbjnIf8Wxp05LM1B6WTUoGMH01w2sx2vIfSeD4tDc6o,63680
|
|
660
|
+
pyg_nightly-2.7.0.dev20251101.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
|
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
|
33
33
|
|
|
34
|
-
__version__ = '2.7.0.
|
|
34
|
+
__version__ = '2.7.0.dev20251101'
|
|
35
35
|
|
|
36
36
|
__all__ = [
|
|
37
37
|
'Index',
|
|
@@ -137,10 +137,13 @@ class TAGDataset(InMemoryDataset):
|
|
|
137
137
|
self.token_on_disk = token_on_disk
|
|
138
138
|
self.tokenize_batch_size = tokenize_batch_size
|
|
139
139
|
self._token = self.tokenize_graph(self.tokenize_batch_size)
|
|
140
|
-
self._llm_explanation_token =
|
|
141
|
-
|
|
142
|
-
self.
|
|
143
|
-
|
|
140
|
+
self._llm_explanation_token: Dict[str, Tensor] = {}
|
|
141
|
+
self._all_token: Dict[str, Tensor] = {}
|
|
142
|
+
if self.name in self.llm_explanation_id:
|
|
143
|
+
self._llm_explanation_token = self.tokenize_graph(
|
|
144
|
+
self.tokenize_batch_size, text_type='llm_explanation')
|
|
145
|
+
self._all_token = self.tokenize_graph(self.tokenize_batch_size,
|
|
146
|
+
text_type='all')
|
|
144
147
|
self.__num_classes__ = dataset.num_classes
|
|
145
148
|
|
|
146
149
|
@property
|
|
@@ -170,14 +173,16 @@ class TAGDataset(InMemoryDataset):
|
|
|
170
173
|
|
|
171
174
|
@property
|
|
172
175
|
def llm_explanation_token(self) -> Dict[str, Tensor]:
|
|
173
|
-
if self._llm_explanation_token is None
|
|
176
|
+
if self._llm_explanation_token is None and \
|
|
177
|
+
self.name in self.llm_explanation_id:
|
|
174
178
|
self._llm_explanation_token = self.tokenize_graph(
|
|
175
179
|
text_type='llm_explanation')
|
|
176
180
|
return self._llm_explanation_token
|
|
177
181
|
|
|
178
182
|
@property
|
|
179
183
|
def all_token(self) -> Dict[str, Tensor]:
|
|
180
|
-
if self._all_token is None
|
|
184
|
+
if self._all_token is None and \
|
|
185
|
+
self.name in self.llm_explanation_id:
|
|
181
186
|
self._all_token = self.tokenize_graph(text_type='all')
|
|
182
187
|
return self._all_token
|
|
183
188
|
|
|
@@ -230,13 +235,15 @@ class TAGDataset(InMemoryDataset):
|
|
|
230
235
|
filename='node-text.csv.gz',
|
|
231
236
|
log=True)
|
|
232
237
|
self.text = list(read_csv(raw_text_path)['text'])
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
238
|
+
if self.name in self.llm_explanation_id:
|
|
239
|
+
print('downloading llm explanations')
|
|
240
|
+
llm_explanation_path = download_google_url(
|
|
241
|
+
id=self.llm_explanation_id[self.name],
|
|
242
|
+
folder=f'{self.root}/raw', filename='node-gpt-response.csv.gz',
|
|
243
|
+
log=True)
|
|
244
|
+
self.llm_explanation = list(read_csv(llm_explanation_path)['text'])
|
|
245
|
+
print('downloading llm predictions')
|
|
246
|
+
fs.cp(f'{self.llm_prediction_url}/{self.name}.csv', self.raw_dir)
|
|
240
247
|
|
|
241
248
|
def process(self) -> None:
|
|
242
249
|
# process Title and Abstraction
|
|
@@ -276,6 +283,14 @@ class TAGDataset(InMemoryDataset):
|
|
|
276
283
|
for i, pred in enumerate(preds):
|
|
277
284
|
pl[i][:len(pred)] = torch.tensor(
|
|
278
285
|
pred[:self.llm_prediction_topk], dtype=torch.long) + 1
|
|
286
|
+
|
|
287
|
+
if self.llm_explanation is None or pl is None:
|
|
288
|
+
raise ValueError(
|
|
289
|
+
"The TAGDataset only have ogbn-arxiv LLM explanations"
|
|
290
|
+
"and predictions in default. The llm explanation and"
|
|
291
|
+
"prediction of each node is not specified.Please pass in"
|
|
292
|
+
"'llm_explanation' and 'llm_prediction' when"
|
|
293
|
+
"convert your dataset to Text Attribute Graph Dataset")
|
|
279
294
|
elif self.name in self.llm_explanation_id:
|
|
280
295
|
self.download()
|
|
281
296
|
else:
|
|
@@ -283,13 +298,6 @@ class TAGDataset(InMemoryDataset):
|
|
|
283
298
|
'The dataset is not ogbn-arxiv,'
|
|
284
299
|
'please pass in your llm explanation list to `llm_explanation`'
|
|
285
300
|
'and llm prediction list to `llm_prediction`')
|
|
286
|
-
if self.llm_explanation is None or pl is None:
|
|
287
|
-
raise ValueError(
|
|
288
|
-
"The TAGDataset only have ogbn-arxiv LLM explanations"
|
|
289
|
-
"and predictions in default. The llm explanation and"
|
|
290
|
-
"prediction of each node is not specified."
|
|
291
|
-
"Please pass in 'llm_explanation' and 'llm_prediction' when"
|
|
292
|
-
"convert your dataset to Text Attribute Graph Dataset")
|
|
293
301
|
|
|
294
302
|
def save_node_text(self, text: List[str]) -> None:
|
|
295
303
|
node_text_path = osp.join(self.root, 'raw', 'node-text.csv.gz')
|
torch_geometric/nn/model_hub.py
CHANGED
|
@@ -144,10 +144,10 @@ class PyGModelHubMixin(ModelHubMixin):
|
|
|
144
144
|
revision,
|
|
145
145
|
cache_dir,
|
|
146
146
|
force_download,
|
|
147
|
-
proxies,
|
|
148
|
-
resume_download,
|
|
149
147
|
local_files_only,
|
|
150
148
|
token,
|
|
149
|
+
proxies=None,
|
|
150
|
+
resume_download=False,
|
|
151
151
|
dataset_name='',
|
|
152
152
|
model_name='',
|
|
153
153
|
map_location='cpu',
|
|
File without changes
|
{pyg_nightly-2.7.0.dev20251030.dist-info → pyg_nightly-2.7.0.dev20251101.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|