pyg-nightly 2.7.0.dev20251010__py3-none-any.whl → 2.7.0.dev20251012__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20251010.dist-info → pyg_nightly-2.7.0.dev20251012.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20251010.dist-info → pyg_nightly-2.7.0.dev20251012.dist-info}/RECORD +8 -8
- torch_geometric/__init__.py +1 -1
- torch_geometric/llm/models/sentence_transformer.py +13 -0
- torch_geometric/llm/utils/backend_utils.py +2 -1
- torch_geometric/llm/utils/vectorrag.py +2 -1
- {pyg_nightly-2.7.0.dev20251010.dist-info → pyg_nightly-2.7.0.dev20251012.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20251010.dist-info → pyg_nightly-2.7.0.dev20251012.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20251010.dist-info → pyg_nightly-2.7.0.dev20251012.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20251012
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=3ALLRK-890CBKAJrL8MegdGoKBbcSrSB1cV9DzGIXPw,2292
|
2
2
|
torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
|
3
3
|
torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -278,14 +278,14 @@ torch_geometric/llm/models/llm.py,sha256=039mq9rZBZMyZW5rYj0fMP5kl9RJAI7N-oJyC4M
|
|
278
278
|
torch_geometric/llm/models/llm_judge.py,sha256=qhc8hmIPNhcfLVRyBVk7jQW7ncoIb9QYw7rcsGAIpyg,6457
|
279
279
|
torch_geometric/llm/models/molecule_gpt.py,sha256=RWoP4RMsoRzZtuedPCLNCfooqibCqxkuAhH-pyek9No,7641
|
280
280
|
torch_geometric/llm/models/protein_mpnn.py,sha256=SwTgafSbI2KJ-yqzn0trZtVWLmfo0_kPEaWSNJUCt70,12266
|
281
|
-
torch_geometric/llm/models/sentence_transformer.py,sha256=
|
281
|
+
torch_geometric/llm/models/sentence_transformer.py,sha256=XYDN7xYyMqUNZyxpY6EjDjfYt1mope5iGsBZ2fLc1J8,7041
|
282
282
|
torch_geometric/llm/models/txt2kg.py,sha256=CjWXCa_WrqIlBfOSPMAK-mnaX19dvH_YhXMWSuLkk4o,14074
|
283
283
|
torch_geometric/llm/models/vision_transformer.py,sha256=aPuVfpSwGR96KaicRYut49g6ShrCklbouaLwyPuwhBQ,1022
|
284
284
|
torch_geometric/llm/utils/__init__.py,sha256=P5By_n15MqkUU1tfh87PGE--J7RVygPeDSBOTy_VlZ0,292
|
285
|
-
torch_geometric/llm/utils/backend_utils.py,sha256=
|
285
|
+
torch_geometric/llm/utils/backend_utils.py,sha256=vde10npVYZTY6ONExu-eeMgzouMnhdFcoTe8GyYuL1k,15874
|
286
286
|
torch_geometric/llm/utils/feature_store.py,sha256=d60n3TlclEhlqoDEHKmvvGI6t8r0nur1BNwXyqqtj24,5903
|
287
287
|
torch_geometric/llm/utils/graph_store.py,sha256=_Hh0aGnokUn0zvOC80xUfT4TtX_7G4KIDoEBkNXkgHY,7103
|
288
|
-
torch_geometric/llm/utils/vectorrag.py,sha256=
|
288
|
+
torch_geometric/llm/utils/vectorrag.py,sha256=7WE73NOzHfChSvmYEfg2dHp8JIgLtX4XaKVRrsKmkc0,4791
|
289
289
|
torch_geometric/loader/__init__.py,sha256=w9LSTbyrLRkyrLXi_10d80csWgfKOKDRQDJXRdcfD0M,1835
|
290
290
|
torch_geometric/loader/base.py,sha256=ataIwNEYL0px3CN3LJEgXIVTRylDHB6-yBFXXuX2JN0,1615
|
291
291
|
torch_geometric/loader/cache.py,sha256=S65heO3YTyUPbttqizCNtKPHIoAw5iHRpbvw6KlXmok,2106
|
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
654
654
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
655
655
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
656
656
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
657
|
-
pyg_nightly-2.7.0.
|
658
|
-
pyg_nightly-2.7.0.
|
659
|
-
pyg_nightly-2.7.0.
|
660
|
-
pyg_nightly-2.7.0.
|
657
|
+
pyg_nightly-2.7.0.dev20251012.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
658
|
+
pyg_nightly-2.7.0.dev20251012.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
659
|
+
pyg_nightly-2.7.0.dev20251012.dist-info/METADATA,sha256=Jiqw0vebP6H8jj7vXsCGfDzGSB2v45yJaMybAvFTMQM,63680
|
660
|
+
pyg_nightly-2.7.0.dev20251012.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20251012'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -112,6 +112,19 @@ class SentenceTransformer(torch.nn.Module):
|
|
112
112
|
output_device: Optional[Union[torch.device, str]] = None,
|
113
113
|
verbose=False,
|
114
114
|
) -> Tensor:
|
115
|
+
r"""Main function for users. Converts strings to embeddings.
|
116
|
+
|
117
|
+
Args:
|
118
|
+
text (List[str]): List of strings to embed.
|
119
|
+
batch_size (int, optional): How many strings to process.
|
120
|
+
Defaults to processing all at once, but this may lead to
|
121
|
+
OOM errors. (default: obj:`None`)
|
122
|
+
output_device (Union[torch.device, str], optional):
|
123
|
+
By default outputs cpu pytorch tensor, but can choose
|
124
|
+
to output to specific cuda devices. (default: obj:`None`)
|
125
|
+
verbose (bool, optional): Controls the verbosity of outputs.
|
126
|
+
(default: obj:`False`)
|
127
|
+
"""
|
115
128
|
is_empty = len(text) == 0
|
116
129
|
text = ['dummy'] if is_empty else text
|
117
130
|
|
@@ -408,7 +408,8 @@ def make_pcst_filter(triples: List[Tuple[str, str,
|
|
408
408
|
:return: Retrieved graph/query data
|
409
409
|
"""
|
410
410
|
# PCST relies on numpy and pcst_fast pypi libs, hence to("cpu")
|
411
|
-
|
411
|
+
with torch.no_grad():
|
412
|
+
q_emb = model.encode([query]).to("cpu")
|
412
413
|
textual_nodes = [(int(i), full_textual_nodes[i])
|
413
414
|
for i in graph["node_idx"]]
|
414
415
|
textual_nodes = DataFrame(textual_nodes,
|
@@ -65,7 +65,8 @@ class DocumentRetriever(VectorRetriever):
|
|
65
65
|
List[str]: Documents retrieved from the vector database.
|
66
66
|
"""
|
67
67
|
if isinstance(query, str):
|
68
|
-
|
68
|
+
with torch.no_grad():
|
69
|
+
query_enc = self.encoder(query, **self.model_kwargs)
|
69
70
|
else:
|
70
71
|
query_enc = query
|
71
72
|
|
File without changes
|
{pyg_nightly-2.7.0.dev20251010.dist-info → pyg_nightly-2.7.0.dev20251012.dist-info}/licenses/LICENSE
RENAMED
File without changes
|