pyg-nightly 2.7.0.dev20251008__py3-none-any.whl → 2.8.0.dev20251124__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20251008
3
+ Version: 2.8.0.dev20251124
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=uBfYWACp7LGhh_ksb2Aqr0daci4EfYWlgcN_kwYn29M,2292
1
+ torch_geometric/__init__.py,sha256=aY1pU-eCTEljl3jizH5K9dsuVlUbq4mmUeavVQrulRw,2292
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -151,7 +151,7 @@ torch_geometric/datasets/shapenet.py,sha256=tn3HiQQAr6lxHrqxfOVaAtl40guwFYTXWCbS
151
151
  torch_geometric/datasets/shrec2016.py,sha256=cTLhctbqE0EUEvKddJFhPzDb1oLKXOth4O_WzsWtyMk,6323
152
152
  torch_geometric/datasets/snap_dataset.py,sha256=deJvB6cpIQ3bu_pcWoqgEo1-Kl_NcFi7ZSUci645X0U,9481
153
153
  torch_geometric/datasets/suite_sparse.py,sha256=eqjH4vAUq872qdk3YdLkZSwlu6r7HHpTgK0vEVGmY1s,3278
154
- torch_geometric/datasets/tag_dataset.py,sha256=jslijGCh37ip2YkrQLyvbk-1QRJ3yqFpmzuQSxckXrE,19402
154
+ torch_geometric/datasets/tag_dataset.py,sha256=TwZMDxnFGjl4vPosZIp1mmqMXjxcMt3WcgeiTeKMjuU,19788
155
155
  torch_geometric/datasets/taobao.py,sha256=CUcZpbWsNTasevflO8zqP0YvENy89P7wpKS4MHaDJ6Q,4170
156
156
  torch_geometric/datasets/teeth3ds.py,sha256=hZvhcq9lsQENNFr5hk50w2T3CgxE_tlnQfrCgN6uIDQ,9919
157
157
  torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDCvABc,4632
@@ -278,14 +278,14 @@ torch_geometric/llm/models/llm.py,sha256=039mq9rZBZMyZW5rYj0fMP5kl9RJAI7N-oJyC4M
278
278
  torch_geometric/llm/models/llm_judge.py,sha256=qhc8hmIPNhcfLVRyBVk7jQW7ncoIb9QYw7rcsGAIpyg,6457
279
279
  torch_geometric/llm/models/molecule_gpt.py,sha256=RWoP4RMsoRzZtuedPCLNCfooqibCqxkuAhH-pyek9No,7641
280
280
  torch_geometric/llm/models/protein_mpnn.py,sha256=SwTgafSbI2KJ-yqzn0trZtVWLmfo0_kPEaWSNJUCt70,12266
281
- torch_geometric/llm/models/sentence_transformer.py,sha256=TSXBxeTktj10YU-h_1prdMCCmAG8MTOKMm760ch4g30,6377
281
+ torch_geometric/llm/models/sentence_transformer.py,sha256=XYDN7xYyMqUNZyxpY6EjDjfYt1mope5iGsBZ2fLc1J8,7041
282
282
  torch_geometric/llm/models/txt2kg.py,sha256=CjWXCa_WrqIlBfOSPMAK-mnaX19dvH_YhXMWSuLkk4o,14074
283
283
  torch_geometric/llm/models/vision_transformer.py,sha256=aPuVfpSwGR96KaicRYut49g6ShrCklbouaLwyPuwhBQ,1022
284
284
  torch_geometric/llm/utils/__init__.py,sha256=P5By_n15MqkUU1tfh87PGE--J7RVygPeDSBOTy_VlZ0,292
285
- torch_geometric/llm/utils/backend_utils.py,sha256=AcvZ8ym3UKCWwWoMl8sNRnj4FSl0_srHw9yxZAKiyeU,15840
285
+ torch_geometric/llm/utils/backend_utils.py,sha256=vde10npVYZTY6ONExu-eeMgzouMnhdFcoTe8GyYuL1k,15874
286
286
  torch_geometric/llm/utils/feature_store.py,sha256=d60n3TlclEhlqoDEHKmvvGI6t8r0nur1BNwXyqqtj24,5903
287
287
  torch_geometric/llm/utils/graph_store.py,sha256=_Hh0aGnokUn0zvOC80xUfT4TtX_7G4KIDoEBkNXkgHY,7103
288
- torch_geometric/llm/utils/vectorrag.py,sha256=m51drMNXsGQTN6qkbR8QiHb8jvcrBlZDHzEjsEmtnes,4753
288
+ torch_geometric/llm/utils/vectorrag.py,sha256=7WE73NOzHfChSvmYEfg2dHp8JIgLtX4XaKVRrsKmkc0,4791
289
289
  torch_geometric/loader/__init__.py,sha256=w9LSTbyrLRkyrLXi_10d80csWgfKOKDRQDJXRdcfD0M,1835
290
290
  torch_geometric/loader/base.py,sha256=ataIwNEYL0px3CN3LJEgXIVTRylDHB6-yBFXXuX2JN0,1615
291
291
  torch_geometric/loader/cache.py,sha256=S65heO3YTyUPbttqizCNtKPHIoAw5iHRpbvw6KlXmok,2106
@@ -319,7 +319,7 @@ torch_geometric/nn/fx.py,sha256=PDtaHJAgodh4xf8FNl4fVxPGZJDbRaq3Q9z8qb1DNNI,1606
319
319
  torch_geometric/nn/glob.py,sha256=MdHjcUlHmFmTevzwND1_x7dXXJPzIDTBJRGOrGdZ8dQ,1088
320
320
  torch_geometric/nn/inits.py,sha256=_8FqacCLPz5Ft2zB5s6dtKGTKWtfrLyCLLuv1QvyKjk,2457
321
321
  torch_geometric/nn/lr_scheduler.py,sha256=_FWdIgGPDSZCK1TZFWHSP5RfpY83Kyhlz7Ja6YHPQVo,8937
322
- torch_geometric/nn/model_hub.py,sha256=2x8uN80BwW2pdBGtU4LNF-8pUtGZMxr0btQCVSgeKwA,9550
322
+ torch_geometric/nn/model_hub.py,sha256=GxgKE9P7wwEHp7dG_pnLI562WGHXIuHkOWD3kUzkX-g,8827
323
323
  torch_geometric/nn/module_dict.py,sha256=c6ThkEfju01ZyhERA8rZgr9oawVfwqOBMrdG3bzSsro,2377
324
324
  torch_geometric/nn/parameter_dict.py,sha256=RJnid_I8jXTjIoDKVr0Ej2E2XKOLxH_lXxLeEHB_wUg,2412
325
325
  torch_geometric/nn/reshape.py,sha256=WJvc_oPPcfsFqN97i4oJRMor17ar5IPeIu8BevKIyIk,426
@@ -424,9 +424,9 @@ torch_geometric/nn/conv/wl_conv_continuous.py,sha256=nnfd5JVAR2UYz6AQxwCN2a8C6RX
424
424
  torch_geometric/nn/conv/x_conv.py,sha256=c_qnD-o9-qMa-vaOgEDGb5ZT1NdhS2vrhTQdp-8cYIo,6013
425
425
  torch_geometric/nn/conv/cugraph/__init__.py,sha256=Z1neZpdSe95MyMB9Zt_ll2mj4ogEecQpkSxS0rq63x4,251
426
426
  torch_geometric/nn/conv/cugraph/base.py,sha256=zt0vbZ6ANqbVjgWNxcLfQSlSVDOn1qK7wzeZ2uB2sMk,6351
427
- torch_geometric/nn/conv/cugraph/gat_conv.py,sha256=JZ2v6ZLA3VRL7s3Bk0QB1N2g6CV2tBtu6Z3Pwj9uja4,2874
428
- torch_geometric/nn/conv/cugraph/rgcn_conv.py,sha256=Dm-tUBKb0-ewBUyYyr4bB69N5cmHQZjEpFcVkzLWB8k,4002
429
- torch_geometric/nn/conv/cugraph/sage_conv.py,sha256=oTmtCjeFbRMUxFgyXhpPNMBlG96cF6voA27jUpvzfFk,2830
427
+ torch_geometric/nn/conv/cugraph/gat_conv.py,sha256=f78t9i_4BHkRDrnZtXiaDCUrnFYX07EuehZvLdZg2rY,3160
428
+ torch_geometric/nn/conv/cugraph/rgcn_conv.py,sha256=2vqNiw9GyRktn42JVj_oco0frgTGfEZltCz1sg9f3eE,4161
429
+ torch_geometric/nn/conv/cugraph/sage_conv.py,sha256=2W2CtyvSBNztpLjLhsU8DnPyXxwfMZJlGktADHphskw,2989
430
430
  torch_geometric/nn/conv/utils/__init__.py,sha256=VWVDyQQu2mP-O3lzP-TEJUSeyhLizTiAb5rMLsUrUzA,852
431
431
  torch_geometric/nn/conv/utils/cheatsheet.py,sha256=-AzSVc5icHfWIw9UxYX8ea_1dziC4v4st_KDwwUeV1A,2792
432
432
  torch_geometric/nn/dense/__init__.py,sha256=_t9aKRZmNqRPneW9edJ4Hh7hGHU9DaPpqf9g55GQJsk,847
@@ -499,7 +499,7 @@ torch_geometric/nn/pool/__init__.py,sha256=VU9cPdLC-MPgt1kfS0ZwehfSD3g0V30VQuR1W
499
499
  torch_geometric/nn/pool/approx_knn.py,sha256=n7C8Cbar6o5tJcuAbzhM5hqMK26hW8dm5DopuocidO0,3967
500
500
  torch_geometric/nn/pool/asap.py,sha256=p8fwpMOeCUyJrdvMmLoTMzr0tI9YCTnefMx8ylIv5xE,6683
501
501
  torch_geometric/nn/pool/avg_pool.py,sha256=pwiQh14BCVsT-iULqVAFW-Dxt7DjFOu8CQX_Hu34vZc,3966
502
- torch_geometric/nn/pool/cluster_pool.py,sha256=XSwZa9wvbJppvCqHAhGky0MzQwNkXNVcnIKdI6ZYuwM,5225
502
+ torch_geometric/nn/pool/cluster_pool.py,sha256=57UNpThRvLumY0159T8nBhxXvZE0mT5YMoCyrpoRmtk,5247
503
503
  torch_geometric/nn/pool/consecutive.py,sha256=7dMiMd5IybNeml1RqZq436FI6sod5ZUxTuDWJjr5syo,273
504
504
  torch_geometric/nn/pool/decimation.py,sha256=AjbU2h_Gl_EQcfkhF977EnrLJ2kait_e4HyCNKRyxPw,1601
505
505
  torch_geometric/nn/pool/edge_pool.py,sha256=cXgcN5xF8z5NeycYMX9m1zoAk1jtSdyK42YiNNHTeow,8571
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
654
654
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
655
655
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
656
656
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
657
- pyg_nightly-2.7.0.dev20251008.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
- pyg_nightly-2.7.0.dev20251008.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
- pyg_nightly-2.7.0.dev20251008.dist-info/METADATA,sha256=sJdSN3mBDJnXEUNKpITdTXObI5YAt9bps3o7xKEL00w,63680
660
- pyg_nightly-2.7.0.dev20251008.dist-info/RECORD,,
657
+ pyg_nightly-2.8.0.dev20251124.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
+ pyg_nightly-2.8.0.dev20251124.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
+ pyg_nightly-2.8.0.dev20251124.dist-info/METADATA,sha256=8O-Cslu9xIWBaT2C0oeVek100Acxa7FjCVFfT1IH3g0,63680
660
+ pyg_nightly-2.8.0.dev20251124.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20251008'
34
+ __version__ = '2.8.0.dev20251124'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -137,10 +137,13 @@ class TAGDataset(InMemoryDataset):
137
137
  self.token_on_disk = token_on_disk
138
138
  self.tokenize_batch_size = tokenize_batch_size
139
139
  self._token = self.tokenize_graph(self.tokenize_batch_size)
140
- self._llm_explanation_token = self.tokenize_graph(
141
- self.tokenize_batch_size, text_type='llm_explanation')
142
- self._all_token = self.tokenize_graph(self.tokenize_batch_size,
143
- text_type='all')
140
+ self._llm_explanation_token: Dict[str, Tensor] = {}
141
+ self._all_token: Dict[str, Tensor] = {}
142
+ if self.name in self.llm_explanation_id:
143
+ self._llm_explanation_token = self.tokenize_graph(
144
+ self.tokenize_batch_size, text_type='llm_explanation')
145
+ self._all_token = self.tokenize_graph(self.tokenize_batch_size,
146
+ text_type='all')
144
147
  self.__num_classes__ = dataset.num_classes
145
148
 
146
149
  @property
@@ -170,14 +173,16 @@ class TAGDataset(InMemoryDataset):
170
173
 
171
174
  @property
172
175
  def llm_explanation_token(self) -> Dict[str, Tensor]:
173
- if self._llm_explanation_token is None: # lazy load
176
+ if self._llm_explanation_token is None and \
177
+ self.name in self.llm_explanation_id:
174
178
  self._llm_explanation_token = self.tokenize_graph(
175
179
  text_type='llm_explanation')
176
180
  return self._llm_explanation_token
177
181
 
178
182
  @property
179
183
  def all_token(self) -> Dict[str, Tensor]:
180
- if self._all_token is None: # lazy load
184
+ if self._all_token is None and \
185
+ self.name in self.llm_explanation_id:
181
186
  self._all_token = self.tokenize_graph(text_type='all')
182
187
  return self._all_token
183
188
 
@@ -230,13 +235,15 @@ class TAGDataset(InMemoryDataset):
230
235
  filename='node-text.csv.gz',
231
236
  log=True)
232
237
  self.text = list(read_csv(raw_text_path)['text'])
233
- print('downloading llm explanations')
234
- llm_explanation_path = download_google_url(
235
- id=self.llm_explanation_id[self.name], folder=f'{self.root}/raw',
236
- filename='node-gpt-response.csv.gz', log=True)
237
- self.llm_explanation = list(read_csv(llm_explanation_path)['text'])
238
- print('downloading llm predictions')
239
- fs.cp(f'{self.llm_prediction_url}/{self.name}.csv', self.raw_dir)
238
+ if self.name in self.llm_explanation_id:
239
+ print('downloading llm explanations')
240
+ llm_explanation_path = download_google_url(
241
+ id=self.llm_explanation_id[self.name],
242
+ folder=f'{self.root}/raw', filename='node-gpt-response.csv.gz',
243
+ log=True)
244
+ self.llm_explanation = list(read_csv(llm_explanation_path)['text'])
245
+ print('downloading llm predictions')
246
+ fs.cp(f'{self.llm_prediction_url}/{self.name}.csv', self.raw_dir)
240
247
 
241
248
  def process(self) -> None:
242
249
  # process Title and Abstraction
@@ -276,6 +283,14 @@ class TAGDataset(InMemoryDataset):
276
283
  for i, pred in enumerate(preds):
277
284
  pl[i][:len(pred)] = torch.tensor(
278
285
  pred[:self.llm_prediction_topk], dtype=torch.long) + 1
286
+
287
+ if self.llm_explanation is None or pl is None:
288
+ raise ValueError(
289
+ "The TAGDataset only have ogbn-arxiv LLM explanations"
290
+ "and predictions in default. The llm explanation and"
291
+ "prediction of each node is not specified.Please pass in"
292
+ "'llm_explanation' and 'llm_prediction' when"
293
+ "convert your dataset to Text Attribute Graph Dataset")
279
294
  elif self.name in self.llm_explanation_id:
280
295
  self.download()
281
296
  else:
@@ -283,13 +298,6 @@ class TAGDataset(InMemoryDataset):
283
298
  'The dataset is not ogbn-arxiv,'
284
299
  'please pass in your llm explanation list to `llm_explanation`'
285
300
  'and llm prediction list to `llm_prediction`')
286
- if self.llm_explanation is None or pl is None:
287
- raise ValueError(
288
- "The TAGDataset only have ogbn-arxiv LLM explanations"
289
- "and predictions in default. The llm explanation and"
290
- "prediction of each node is not specified."
291
- "Please pass in 'llm_explanation' and 'llm_prediction' when"
292
- "convert your dataset to Text Attribute Graph Dataset")
293
301
 
294
302
  def save_node_text(self, text: List[str]) -> None:
295
303
  node_text_path = osp.join(self.root, 'raw', 'node-text.csv.gz')
@@ -112,6 +112,19 @@ class SentenceTransformer(torch.nn.Module):
112
112
  output_device: Optional[Union[torch.device, str]] = None,
113
113
  verbose=False,
114
114
  ) -> Tensor:
115
+ r"""Main function for users. Converts strings to embeddings.
116
+
117
+ Args:
118
+ text (List[str]): List of strings to embed.
119
+ batch_size (int, optional): How many strings to process.
120
+ Defaults to processing all at once, but this may lead to
121
+ OOM errors. (default: obj:`None`)
122
+ output_device (Union[torch.device, str], optional):
123
+ By default outputs cpu pytorch tensor, but can choose
124
+ to output to specific cuda devices. (default: obj:`None`)
125
+ verbose (bool, optional): Controls the verbosity of outputs.
126
+ (default: obj:`False`)
127
+ """
115
128
  is_empty = len(text) == 0
116
129
  text = ['dummy'] if is_empty else text
117
130
 
@@ -408,7 +408,8 @@ def make_pcst_filter(triples: List[Tuple[str, str,
408
408
  :return: Retrieved graph/query data
409
409
  """
410
410
  # PCST relies on numpy and pcst_fast pypi libs, hence to("cpu")
411
- q_emb = model.encode([query]).to("cpu")
411
+ with torch.no_grad():
412
+ q_emb = model.encode([query]).to("cpu")
412
413
  textual_nodes = [(int(i), full_textual_nodes[i])
413
414
  for i in graph["node_idx"]]
414
415
  textual_nodes = DataFrame(textual_nodes,
@@ -65,7 +65,8 @@ class DocumentRetriever(VectorRetriever):
65
65
  List[str]: Documents retrieved from the vector database.
66
66
  """
67
67
  if isinstance(query, str):
68
- query_enc = self.encoder(query, **self.model_kwargs)
68
+ with torch.no_grad():
69
+ query_enc = self.encoder(query, **self.model_kwargs)
69
70
  else:
70
71
  query_enc = query
71
72
 
@@ -26,6 +26,9 @@ class CuGraphGATConv(CuGraphModule): # pragma: no cover
26
26
  :class:`~torch_geometric.nn.conv.GATConv` based on the :obj:`cugraph-ops`
27
27
  package that fuses message passing computation for accelerated execution
28
28
  and lower memory footprint.
29
+ The current method to enable :obj:`cugraph-ops`
30
+ is to use `The NVIDIA PyG Container
31
+ <https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg>`_.
29
32
  """
30
33
  def __init__(
31
34
  self,
@@ -67,6 +70,7 @@ class CuGraphGATConv(CuGraphModule): # pragma: no cover
67
70
  self,
68
71
  x: Tensor,
69
72
  edge_index: EdgeIndex,
73
+ edge_attr: Tensor,
70
74
  max_num_neighbors: Optional[int] = None,
71
75
  ) -> Tensor:
72
76
  graph = self.get_cugraph(edge_index, max_num_neighbors)
@@ -75,10 +79,12 @@ class CuGraphGATConv(CuGraphModule): # pragma: no cover
75
79
 
76
80
  if LEGACY_MODE:
77
81
  out = GATConvAgg(x, self.att, graph, self.heads, 'LeakyReLU',
78
- self.negative_slope, False, self.concat)
82
+ self.negative_slope, False, self.concat,
83
+ edge_feat=edge_attr)
79
84
  else:
80
85
  out = GATConvAgg(x, self.att, graph, self.heads, 'LeakyReLU',
81
- self.negative_slope, self.concat)
86
+ self.negative_slope, self.concat,
87
+ edge_feat=edge_attr)
82
88
 
83
89
  if self.bias is not None:
84
90
  out = out + self.bias
@@ -29,6 +29,9 @@ class CuGraphRGCNConv(CuGraphModule): # pragma: no cover
29
29
  :class:`~torch_geometric.nn.conv.RGCNConv` based on the :obj:`cugraph-ops`
30
30
  package that fuses message passing computation for accelerated execution
31
31
  and lower memory footprint.
32
+ The current method to enable :obj:`cugraph-ops`
33
+ is to use `The NVIDIA PyG Container
34
+ <https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg>`_.
32
35
  """
33
36
  def __init__(self, in_channels: int, out_channels: int, num_relations: int,
34
37
  num_bases: Optional[int] = None, aggr: str = 'mean',
@@ -27,6 +27,9 @@ class CuGraphSAGEConv(CuGraphModule): # pragma: no cover
27
27
  :class:`~torch_geometric.nn.conv.SAGEConv` based on the :obj:`cugraph-ops`
28
28
  package that fuses message passing computation for accelerated execution
29
29
  and lower memory footprint.
30
+ The current method to enable :obj:`cugraph-ops`
31
+ is to use `The NVIDIA PyG Container
32
+ <https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pyg>`_.
30
33
  """
31
34
  def __init__(
32
35
  self,
@@ -144,10 +144,10 @@ class PyGModelHubMixin(ModelHubMixin):
144
144
  revision,
145
145
  cache_dir,
146
146
  force_download,
147
- proxies,
148
- resume_download,
149
147
  local_files_only,
150
148
  token,
149
+ proxies=None,
150
+ resume_download=False,
151
151
  dataset_name='',
152
152
  model_name='',
153
153
  map_location='cpu',
@@ -165,8 +165,6 @@ class PyGModelHubMixin(ModelHubMixin):
165
165
  revision=revision,
166
166
  cache_dir=cache_dir,
167
167
  force_download=force_download,
168
- proxies=proxies,
169
- resume_download=resume_download,
170
168
  token=token,
171
169
  local_files_only=local_files_only,
172
170
  )
@@ -188,8 +186,6 @@ class PyGModelHubMixin(ModelHubMixin):
188
186
  cls,
189
187
  pretrained_model_name_or_path: str,
190
188
  force_download: bool = False,
191
- resume_download: bool = False,
192
- proxies: Optional[Dict] = None,
193
189
  token: Optional[Union[str, bool]] = None,
194
190
  cache_dir: Optional[str] = None,
195
191
  local_files_only: bool = False,
@@ -215,13 +211,6 @@ class PyGModelHubMixin(ModelHubMixin):
215
211
  (re-)download of the model weights and configuration files,
216
212
  overriding the cached versions if they exist.
217
213
  (default: :obj:`False`)
218
- resume_download (bool, optional): Whether to delete incompletely
219
- received files. Will attempt to resume the download if such a
220
- file exists. (default: :obj:`False`)
221
- proxies (Dict[str, str], optional): A dictionary of proxy servers
222
- to use by protocol or endpoint, *e.g.*,
223
- :obj:`{'http': 'foo.bar:3128', 'http://host': 'foo.bar:4012'}`.
224
- The proxies are used on each request. (default: :obj:`None`)
225
214
  token (str or bool, optional): The token to use as HTTP bearer
226
215
  authorization for remote files. If set to :obj:`True`, will use
227
216
  the token generated when running :obj:`transformers-cli login`
@@ -239,8 +228,6 @@ class PyGModelHubMixin(ModelHubMixin):
239
228
  return super().from_pretrained(
240
229
  pretrained_model_name_or_path,
241
230
  force_download=force_download,
242
- resume_download=resume_download,
243
- proxies=proxies,
244
231
  use_auth_token=token,
245
232
  cache_dir=cache_dir,
246
233
  local_files_only=local_files_only,
@@ -20,8 +20,7 @@ class UnpoolInfo(NamedTuple):
20
20
 
21
21
  class ClusterPooling(torch.nn.Module):
22
22
  r"""The cluster pooling operator from the `"Edge-Based Graph Component
23
- Pooling" <paper url>`_ paper.
24
-
23
+ Pooling" <https://arxiv.org/abs/2409.11856>`_ paper.
25
24
  :class:`ClusterPooling` computes a score for each edge.
26
25
  Based on the selected edges, graph clusters are calculated and compressed
27
26
  to one node using the injective :obj:`"sum"` aggregation function.