pyg-nightly 2.7.0.dev20251002__py3-none-any.whl → 2.7.0.dev20251004__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20251002.dist-info → pyg_nightly-2.7.0.dev20251004.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20251002.dist-info → pyg_nightly-2.7.0.dev20251004.dist-info}/RECORD +8 -8
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/medshapenet.py +2 -1
- torch_geometric/llm/models/g_retriever.py +6 -4
- torch_geometric/profile/utils.py +3 -4
- {pyg_nightly-2.7.0.dev20251002.dist-info → pyg_nightly-2.7.0.dev20251004.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20251002.dist-info → pyg_nightly-2.7.0.dev20251004.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20251002.dist-info → pyg_nightly-2.7.0.dev20251004.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20251004
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=yfHvrC4eQHt-2nRrRakETd_K0aEsslEH_OsrafyH7HE,2292
|
2
2
|
torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
|
3
3
|
torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -114,7 +114,7 @@ torch_geometric/datasets/linkx_dataset.py,sha256=_DsF5d2-o79-WibEKojIJKCpCF3VVxS
|
|
114
114
|
torch_geometric/datasets/lrgb.py,sha256=lOlzYCn9XbwQb3HK_wdufqjqK_aZbnoUqZu0NXZ6Oyw,11657
|
115
115
|
torch_geometric/datasets/malnet_tiny.py,sha256=E_ymC7_XS8rgZelcdevZyCDVjX5Ov21G6vwrG0JgAP0,5271
|
116
116
|
torch_geometric/datasets/md17.py,sha256=Wv-Q75uUDrFjRur5nOvg2TSw68UxkdYDJvkf3YA-T70,16735
|
117
|
-
torch_geometric/datasets/medshapenet.py,sha256=
|
117
|
+
torch_geometric/datasets/medshapenet.py,sha256=bd94y_bgTUkGYC0jUAg9f_NKI0x83ZNOh-SJYBEXwH0,5618
|
118
118
|
torch_geometric/datasets/mixhop_synthetic_dataset.py,sha256=4NNvTHUvvV6pcqQCyVDS5XhppXUeF2H9GTfFoc49eyU,3951
|
119
119
|
torch_geometric/datasets/mnist_superpixels.py,sha256=o2ArbZ0_OE0u8VCaHmWwvngESlOFr9oM9dSEP_tjAS4,3340
|
120
120
|
torch_geometric/datasets/modelnet.py,sha256=rqR-e75lC8PS_IX7VlNbo2Az9IWfqMNvDp8rmQCp-LE,5357
|
@@ -271,7 +271,7 @@ torch_geometric/llm/__init__.py,sha256=qOCyBeWO8vcUTI71DLv1-lrssWoAqIyE1JTuzHM4r
|
|
271
271
|
torch_geometric/llm/large_graph_indexer.py,sha256=ip5wU7Rj4S1tFc53AqAtvyvGqeVC7AJrVMEbRTHyz54,28429
|
272
272
|
torch_geometric/llm/rag_loader.py,sha256=lsUt5kvHGbQzxOuWubBVB0RkMcTi6b4RNRuvsArw3Ys,5641
|
273
273
|
torch_geometric/llm/models/__init__.py,sha256=Xb2GacStLOYCAu34NNzG-zog-zapXh1asl3S6_eLMsc,547
|
274
|
-
torch_geometric/llm/models/g_retriever.py,sha256=
|
274
|
+
torch_geometric/llm/models/g_retriever.py,sha256=BPERbaekEyD0e7VUNy5PJlzfAqRkiYFwzWe3QEokgfs,9112
|
275
275
|
torch_geometric/llm/models/git_mol.py,sha256=m1YJb6Xb2i6j9wEqHzqE4YBWMr9i1CJpMp6T-E24fsA,12680
|
276
276
|
torch_geometric/llm/models/glem.py,sha256=GlL_I63g-_5eTycSGRj720YntldQ-CQ351RaDPc6XAU,16674
|
277
277
|
torch_geometric/llm/models/llm.py,sha256=039mq9rZBZMyZW5rYj0fMP5kl9RJAI7N-oJyC4Mf2Gs,18122
|
@@ -526,7 +526,7 @@ torch_geometric/profile/benchmark.py,sha256=EuD12qJiiPCSwkg5w8arELXiRT_QY_3Wz_rq
|
|
526
526
|
torch_geometric/profile/nvtx.py,sha256=AKBr-rqlHDnls_UM02Dfq5BZmyFTHS5Li5gaeKmsAJI,2032
|
527
527
|
torch_geometric/profile/profile.py,sha256=cHCY4U0XtyqyKC5u380q6TspsOZ5tGHNXaZsKuzYi1A,11793
|
528
528
|
torch_geometric/profile/profiler.py,sha256=rfNciRzWDka_BgO6aPFi3cy8mcT4lSgFWy-WfPgI2SI,16891
|
529
|
-
torch_geometric/profile/utils.py,sha256=
|
529
|
+
torch_geometric/profile/utils.py,sha256=4Gyl3Rx5aCKJB4HkLzcL1IXAwFqHrc9Yrc7IuMWskcA,5893
|
530
530
|
torch_geometric/sampler/__init__.py,sha256=NsAvP6S9wfR0Dsc1d5tR7fj5owRlARRUj3RuUeh8ydg,578
|
531
531
|
torch_geometric/sampler/base.py,sha256=GifHECotqBrD82yeqFHuW67MyTB7djN3ejHEkqR3GNI,41187
|
532
532
|
torch_geometric/sampler/hgt_sampler.py,sha256=jizRJyEoz4WBOEELuqdytG2hB3UpVQX7yVPM83kvpfE,2991
|
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
654
654
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
655
655
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
656
656
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
657
|
-
pyg_nightly-2.7.0.
|
658
|
-
pyg_nightly-2.7.0.
|
659
|
-
pyg_nightly-2.7.0.
|
660
|
-
pyg_nightly-2.7.0.
|
657
|
+
pyg_nightly-2.7.0.dev20251004.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
658
|
+
pyg_nightly-2.7.0.dev20251004.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
659
|
+
pyg_nightly-2.7.0.dev20251004.dist-info/METADATA,sha256=WZ-UTXOdyvvETpudgVsfUg3GyZsVEl1kj9XmbvEiU78,63680
|
660
|
+
pyg_nightly-2.7.0.dev20251004.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20251004'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -96,7 +96,8 @@ class MedShapeNet(InMemoryDataset):
|
|
96
96
|
|
97
97
|
subset = []
|
98
98
|
for dataset in list_of_datasets:
|
99
|
-
|
99
|
+
parts = dataset.split("/")
|
100
|
+
self.newpath = self.root + '/' + parts[1 if len(parts) > 1 else 0]
|
100
101
|
if not os.path.exists(self.newpath):
|
101
102
|
os.makedirs(self.newpath)
|
102
103
|
stl_files = msn_instance.dataset_files(dataset, '.stl')
|
@@ -24,12 +24,14 @@ class GRetriever(torch.nn.Module):
|
|
24
24
|
|
25
25
|
.. warning::
|
26
26
|
This module has been tested with the following HuggingFace models
|
27
|
+
* :obj:`llm_to_use="meta-llama/Meta-Llama-3.1-8B-Instruct"`
|
28
|
+
* :obj:`llm_to_use="Qwen/Qwen3-0.6B"`
|
27
29
|
|
28
|
-
* :obj:`llm_to_use="meta-llama/Llama-2-7b-chat-hf"`
|
29
|
-
* :obj:`llm_to_use="google/gemma-7b"`
|
30
30
|
|
31
|
-
|
32
|
-
|
31
|
+
This module should work with any HuggingFace model.
|
32
|
+
See other models at `HuggingFace
|
33
|
+
Models <https://huggingface.co/models>`_
|
34
|
+
and let us know if you
|
33
35
|
encounter any issues.
|
34
36
|
|
35
37
|
.. note::
|
torch_geometric/profile/utils.py
CHANGED
@@ -123,10 +123,9 @@ def get_gpu_memory_from_nvidia_smi( # pragma: no cover
|
|
123
123
|
lines = output.decode('utf-8').split('\n')[1:-1]
|
124
124
|
mem_list = []
|
125
125
|
for line in lines:
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
else:
|
126
|
+
try:
|
127
|
+
mem_list.append(int(line.split()[0]))
|
128
|
+
except (TypeError, ValueError):
|
130
129
|
mem_list.append(None)
|
131
130
|
return mem_list
|
132
131
|
|
File without changes
|
{pyg_nightly-2.7.0.dev20251002.dist-info → pyg_nightly-2.7.0.dev20251004.dist-info}/licenses/LICENSE
RENAMED
File without changes
|