pyg-nightly 2.7.0.dev20251002__py3-none-any.whl → 2.7.0.dev20251004__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20251002
3
+ Version: 2.7.0.dev20251004
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=zmY8uj7LnHDgndMZ1cWvURjSKApKxsMGa7nF8KAJE0k,2292
1
+ torch_geometric/__init__.py,sha256=yfHvrC4eQHt-2nRrRakETd_K0aEsslEH_OsrafyH7HE,2292
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -114,7 +114,7 @@ torch_geometric/datasets/linkx_dataset.py,sha256=_DsF5d2-o79-WibEKojIJKCpCF3VVxS
114
114
  torch_geometric/datasets/lrgb.py,sha256=lOlzYCn9XbwQb3HK_wdufqjqK_aZbnoUqZu0NXZ6Oyw,11657
115
115
  torch_geometric/datasets/malnet_tiny.py,sha256=E_ymC7_XS8rgZelcdevZyCDVjX5Ov21G6vwrG0JgAP0,5271
116
116
  torch_geometric/datasets/md17.py,sha256=Wv-Q75uUDrFjRur5nOvg2TSw68UxkdYDJvkf3YA-T70,16735
117
- torch_geometric/datasets/medshapenet.py,sha256=eCBCXKpueweCwDSf_Q4_MwVA3IbJd04FSxnknLnMHTk,5567
117
+ torch_geometric/datasets/medshapenet.py,sha256=bd94y_bgTUkGYC0jUAg9f_NKI0x83ZNOh-SJYBEXwH0,5618
118
118
  torch_geometric/datasets/mixhop_synthetic_dataset.py,sha256=4NNvTHUvvV6pcqQCyVDS5XhppXUeF2H9GTfFoc49eyU,3951
119
119
  torch_geometric/datasets/mnist_superpixels.py,sha256=o2ArbZ0_OE0u8VCaHmWwvngESlOFr9oM9dSEP_tjAS4,3340
120
120
  torch_geometric/datasets/modelnet.py,sha256=rqR-e75lC8PS_IX7VlNbo2Az9IWfqMNvDp8rmQCp-LE,5357
@@ -271,7 +271,7 @@ torch_geometric/llm/__init__.py,sha256=qOCyBeWO8vcUTI71DLv1-lrssWoAqIyE1JTuzHM4r
271
271
  torch_geometric/llm/large_graph_indexer.py,sha256=ip5wU7Rj4S1tFc53AqAtvyvGqeVC7AJrVMEbRTHyz54,28429
272
272
  torch_geometric/llm/rag_loader.py,sha256=lsUt5kvHGbQzxOuWubBVB0RkMcTi6b4RNRuvsArw3Ys,5641
273
273
  torch_geometric/llm/models/__init__.py,sha256=Xb2GacStLOYCAu34NNzG-zog-zapXh1asl3S6_eLMsc,547
274
- torch_geometric/llm/models/g_retriever.py,sha256=SeW0rlrlzMhN3aVslhq_GUyUgS4sVw_nMAT5YiXzZd8,9072
274
+ torch_geometric/llm/models/g_retriever.py,sha256=BPERbaekEyD0e7VUNy5PJlzfAqRkiYFwzWe3QEokgfs,9112
275
275
  torch_geometric/llm/models/git_mol.py,sha256=m1YJb6Xb2i6j9wEqHzqE4YBWMr9i1CJpMp6T-E24fsA,12680
276
276
  torch_geometric/llm/models/glem.py,sha256=GlL_I63g-_5eTycSGRj720YntldQ-CQ351RaDPc6XAU,16674
277
277
  torch_geometric/llm/models/llm.py,sha256=039mq9rZBZMyZW5rYj0fMP5kl9RJAI7N-oJyC4Mf2Gs,18122
@@ -526,7 +526,7 @@ torch_geometric/profile/benchmark.py,sha256=EuD12qJiiPCSwkg5w8arELXiRT_QY_3Wz_rq
526
526
  torch_geometric/profile/nvtx.py,sha256=AKBr-rqlHDnls_UM02Dfq5BZmyFTHS5Li5gaeKmsAJI,2032
527
527
  torch_geometric/profile/profile.py,sha256=cHCY4U0XtyqyKC5u380q6TspsOZ5tGHNXaZsKuzYi1A,11793
528
528
  torch_geometric/profile/profiler.py,sha256=rfNciRzWDka_BgO6aPFi3cy8mcT4lSgFWy-WfPgI2SI,16891
529
- torch_geometric/profile/utils.py,sha256=ynlUVemNJZ6XjJKIkPJNwFPoUyBgVAnchfHBpKOp_HE,5903
529
+ torch_geometric/profile/utils.py,sha256=4Gyl3Rx5aCKJB4HkLzcL1IXAwFqHrc9Yrc7IuMWskcA,5893
530
530
  torch_geometric/sampler/__init__.py,sha256=NsAvP6S9wfR0Dsc1d5tR7fj5owRlARRUj3RuUeh8ydg,578
531
531
  torch_geometric/sampler/base.py,sha256=GifHECotqBrD82yeqFHuW67MyTB7djN3ejHEkqR3GNI,41187
532
532
  torch_geometric/sampler/hgt_sampler.py,sha256=jizRJyEoz4WBOEELuqdytG2hB3UpVQX7yVPM83kvpfE,2991
@@ -654,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
654
654
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
655
655
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
656
656
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
657
- pyg_nightly-2.7.0.dev20251002.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
- pyg_nightly-2.7.0.dev20251002.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
- pyg_nightly-2.7.0.dev20251002.dist-info/METADATA,sha256=A3ulW4_9Zy9-7vyoFH9h7wMI-xenp3K24p1CpTBG5p8,63680
660
- pyg_nightly-2.7.0.dev20251002.dist-info/RECORD,,
657
+ pyg_nightly-2.7.0.dev20251004.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
+ pyg_nightly-2.7.0.dev20251004.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
+ pyg_nightly-2.7.0.dev20251004.dist-info/METADATA,sha256=WZ-UTXOdyvvETpudgVsfUg3GyZsVEl1kj9XmbvEiU78,63680
660
+ pyg_nightly-2.7.0.dev20251004.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20251002'
34
+ __version__ = '2.7.0.dev20251004'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -96,7 +96,8 @@ class MedShapeNet(InMemoryDataset):
96
96
 
97
97
  subset = []
98
98
  for dataset in list_of_datasets:
99
- self.newpath = self.root + '/' + dataset.split("/")[1]
99
+ parts = dataset.split("/")
100
+ self.newpath = self.root + '/' + parts[1 if len(parts) > 1 else 0]
100
101
  if not os.path.exists(self.newpath):
101
102
  os.makedirs(self.newpath)
102
103
  stl_files = msn_instance.dataset_files(dataset, '.stl')
@@ -24,12 +24,14 @@ class GRetriever(torch.nn.Module):
24
24
 
25
25
  .. warning::
26
26
  This module has been tested with the following HuggingFace models
27
+ * :obj:`llm_to_use="meta-llama/Meta-Llama-3.1-8B-Instruct"`
28
+ * :obj:`llm_to_use="Qwen/Qwen3-0.6B"`
27
29
 
28
- * :obj:`llm_to_use="meta-llama/Llama-2-7b-chat-hf"`
29
- * :obj:`llm_to_use="google/gemma-7b"`
30
30
 
31
- and may not work with other models. See other models at `HuggingFace
32
- Models <https://huggingface.co/models>`_ and let us know if you
31
+ This module should work with any HuggingFace model.
32
+ See other models at `HuggingFace
33
+ Models <https://huggingface.co/models>`_
34
+ and let us know if you
33
35
  encounter any issues.
34
36
 
35
37
  .. note::
@@ -123,10 +123,9 @@ def get_gpu_memory_from_nvidia_smi( # pragma: no cover
123
123
  lines = output.decode('utf-8').split('\n')[1:-1]
124
124
  mem_list = []
125
125
  for line in lines:
126
- val = line.split()[0]
127
- if val != '[N/A]':
128
- mem_list.append(int(val))
129
- else:
126
+ try:
127
+ mem_list.append(int(line.split()[0]))
128
+ except (TypeError, ValueError):
130
129
  mem_list.append(None)
131
130
  return mem_list
132
131