pyg-nightly 2.7.0.dev20250909__py3-none-any.whl → 2.7.0.dev20250910__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250909
3
+ Version: 2.7.0.dev20250910
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=b9w_XN3wm4unZ7jxNsQ327GPF9zKTV44a5HfC4fSUvw,2292
1
+ torch_geometric/__init__.py,sha256=6DYZWRpxtgSBbAwl2eIiEylFG48gBD1uBNmuBQhahx4,2292
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -267,10 +267,10 @@ torch_geometric/io/ply.py,sha256=NdeTtr79vJ1HS37ZV2N61EUmA5NGJd2I6cUj1Pg7Ypg,489
267
267
  torch_geometric/io/sdf.py,sha256=H2PC6dSW9Kncc1ulb0UN0JnTRT93NY2fY8lf6K4hb50,1165
268
268
  torch_geometric/io/tu.py,sha256=-v5Ago7DfmGTRBtB5RZFvmv4XpLnKKnk-NOnxlHtB_c,4881
269
269
  torch_geometric/io/txt_array.py,sha256=LDeX2qtlNKW-kVe-wpnskMwAdXQp1jVCGQnrJce7Smg,910
270
- torch_geometric/llm/__init__.py,sha256=ikGCkUbn_gjlq6GPSDu43sErVN8syBetNNasqtn9X74,217
270
+ torch_geometric/llm/__init__.py,sha256=qOCyBeWO8vcUTI71DLv1-lrssWoAqIyE1JTuzHM4rDU,221
271
271
  torch_geometric/llm/large_graph_indexer.py,sha256=ip5wU7Rj4S1tFc53AqAtvyvGqeVC7AJrVMEbRTHyz54,28429
272
272
  torch_geometric/llm/rag_loader.py,sha256=lsUt5kvHGbQzxOuWubBVB0RkMcTi6b4RNRuvsArw3Ys,5641
273
- torch_geometric/llm/models/__init__.py,sha256=nzO63kzvbWNRicrxvmRl0m622WEAZ6_x8XI_hCocTH4,537
273
+ torch_geometric/llm/models/__init__.py,sha256=Xb2GacStLOYCAu34NNzG-zog-zapXh1asl3S6_eLMsc,547
274
274
  torch_geometric/llm/models/g_retriever.py,sha256=SeW0rlrlzMhN3aVslhq_GUyUgS4sVw_nMAT5YiXzZd8,9072
275
275
  torch_geometric/llm/models/git_mol.py,sha256=m1YJb6Xb2i6j9wEqHzqE4YBWMr9i1CJpMp6T-E24fsA,12680
276
276
  torch_geometric/llm/models/glem.py,sha256=GlL_I63g-_5eTycSGRj720YntldQ-CQ351RaDPc6XAU,16674
@@ -278,11 +278,12 @@ torch_geometric/llm/models/llm.py,sha256=LKYdUSw2PSWYEN13DYYaJt0dHRQTptX6mM1rAh7
278
278
  torch_geometric/llm/models/llm_judge.py,sha256=qhc8hmIPNhcfLVRyBVk7jQW7ncoIb9QYw7rcsGAIpyg,6457
279
279
  torch_geometric/llm/models/molecule_gpt.py,sha256=RWoP4RMsoRzZtuedPCLNCfooqibCqxkuAhH-pyek9No,7641
280
280
  torch_geometric/llm/models/protein_mpnn.py,sha256=SwTgafSbI2KJ-yqzn0trZtVWLmfo0_kPEaWSNJUCt70,12266
281
- torch_geometric/llm/models/sentence_transformer.py,sha256=vubAluqfxVKevuPpxl0c43ps_f3N0ZMi1_cRIV9EwuA,6076
281
+ torch_geometric/llm/models/sentence_transformer.py,sha256=TSXBxeTktj10YU-h_1prdMCCmAG8MTOKMm760ch4g30,6377
282
282
  torch_geometric/llm/models/txt2kg.py,sha256=CjWXCa_WrqIlBfOSPMAK-mnaX19dvH_YhXMWSuLkk4o,14074
283
- torch_geometric/llm/models/vision_transformer.py,sha256=diVBefjIynzYs8WBlcpTeSVnw1PUecHY--B9Yd-W2hA,863
283
+ torch_geometric/llm/models/vision_transformer.py,sha256=aPuVfpSwGR96KaicRYut49g6ShrCklbouaLwyPuwhBQ,1022
284
+ torch_geometric/llm/utils/__init__.py,sha256=P5By_n15MqkUU1tfh87PGE--J7RVygPeDSBOTy_VlZ0,292
284
285
  torch_geometric/llm/utils/backend_utils.py,sha256=AcvZ8ym3UKCWwWoMl8sNRnj4FSl0_srHw9yxZAKiyeU,15840
285
- torch_geometric/llm/utils/feature_store.py,sha256=CMmDveFxLGfCUdyo0c0sygLLplZlIj-Fwxuk1kKxpQs,5885
286
+ torch_geometric/llm/utils/feature_store.py,sha256=d60n3TlclEhlqoDEHKmvvGI6t8r0nur1BNwXyqqtj24,5903
286
287
  torch_geometric/llm/utils/graph_store.py,sha256=_Hh0aGnokUn0zvOC80xUfT4TtX_7G4KIDoEBkNXkgHY,7103
287
288
  torch_geometric/llm/utils/vectorrag.py,sha256=m51drMNXsGQTN6qkbR8QiHb8jvcrBlZDHzEjsEmtnes,4753
288
289
  torch_geometric/loader/__init__.py,sha256=w9LSTbyrLRkyrLXi_10d80csWgfKOKDRQDJXRdcfD0M,1835
@@ -311,9 +312,9 @@ torch_geometric/loader/utils.py,sha256=3hzKzIgB52QIZu7Jdn4JeXZaegIJinIQfIUP9DrUW
311
312
  torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
312
313
  torch_geometric/metrics/__init__.py,sha256=3krvDobW6vV5yHTjq2S2pmOXxNfysNG26muq7z48e94,699
313
314
  torch_geometric/metrics/link_pred.py,sha256=1_hE3KiRqAdZLI6QuUbjgyFC__mTyFu_RimM3bD8wRw,31678
314
- torch_geometric/nn/__init__.py,sha256=RrWRzEoqtR3lsO2lAzYXboLPb3uYEX2z3tLxiBIVWjc,847
315
+ torch_geometric/nn/__init__.py,sha256=tTEKDy4vpjPNKyG1Vg9GIx7dVFJuQtBoh2M19ascGpo,880
315
316
  torch_geometric/nn/data_parallel.py,sha256=YiybTWoSFyfSzlXAamZ_-y1f7B6tvDEFHOuy_AyJz9Q,4761
316
- torch_geometric/nn/encoding.py,sha256=3DCOCO-XFt-lMb97sHWGN-4KeGUFY5lVo9P00SzrCNk,3559
317
+ torch_geometric/nn/encoding.py,sha256=82fpwyOx0-STFSAJ5AzG0p2WFC9u1M4KgmKIql8hSLc,3634
317
318
  torch_geometric/nn/fx.py,sha256=PDtaHJAgodh4xf8FNl4fVxPGZJDbRaq3Q9z8qb1DNNI,16063
318
319
  torch_geometric/nn/glob.py,sha256=MdHjcUlHmFmTevzwND1_x7dXXJPzIDTBJRGOrGdZ8dQ,1088
319
320
  torch_geometric/nn/inits.py,sha256=_8FqacCLPz5Ft2zB5s6dtKGTKWtfrLyCLLuv1QvyKjk,2457
@@ -351,7 +352,7 @@ torch_geometric/nn/aggr/set_transformer.py,sha256=FG7_JizpFX14M6VSCwLSjYXYdJ1ZiQ
351
352
  torch_geometric/nn/aggr/sort.py,sha256=bvOOWnFkNOBOZih4rqVZQsjfeDX3vmXo1bpPSFD846w,2507
352
353
  torch_geometric/nn/aggr/utils.py,sha256=SQvdc0g6p_E2j0prA14MW2ekjEDvV-g545N0Q85uc-o,8625
353
354
  torch_geometric/nn/aggr/variance_preserving.py,sha256=fu-U_aGYpVLpgSFvVg0ONMe6nqoyv8tZ6Y35qMYTf9w,1126
354
- torch_geometric/nn/attention/__init__.py,sha256=w-jDQFpVqARJKjttTgKkD9kkAqRJl4MpASCfiNYIfr0,263
355
+ torch_geometric/nn/attention/__init__.py,sha256=smNHoLd_JsPB83BOS9SKS9AQm17xAWbpi2NOoAhnvL0,273
355
356
  torch_geometric/nn/attention/performer.py,sha256=2PCDn4_-oNTao2-DkXIaoi18anP01OxRELF2pvp-jk8,7357
356
357
  torch_geometric/nn/attention/polynormer.py,sha256=uBxGs0nldp6oGlByqbxgEk23VeXLEd6B3myS5BOKDRs,3998
357
358
  torch_geometric/nn/attention/qformer.py,sha256=7J-pWm_vpumK38IC-iCBz4oqL-BEIofEIxJ0wfjWq9A,2338
@@ -653,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
653
654
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
654
655
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
655
656
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
656
- pyg_nightly-2.7.0.dev20250909.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
657
- pyg_nightly-2.7.0.dev20250909.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
658
- pyg_nightly-2.7.0.dev20250909.dist-info/METADATA,sha256=6QdLMCEpPBFYlZGAG6D4gclmcLsKpWxCGDQ1j2CccR4,64145
659
- pyg_nightly-2.7.0.dev20250909.dist-info/RECORD,,
657
+ pyg_nightly-2.7.0.dev20250910.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
658
+ pyg_nightly-2.7.0.dev20250910.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
659
+ pyg_nightly-2.7.0.dev20250910.dist-info/METADATA,sha256=uuM-Hir5cz3xHjKnxcV5W027kHC71PY4M6eMzMVTlwg,64145
660
+ pyg_nightly-2.7.0.dev20250910.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250909'
34
+ __version__ = '2.7.0.dev20250910'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -4,6 +4,6 @@ from .utils import * # noqa
4
4
  from .models import * # noqa
5
5
 
6
6
  __all__ = classes = [
7
- LargeGraphIndexer,
8
- RAGQueryLoader,
7
+ 'LargeGraphIndexer',
8
+ 'RAGQueryLoader',
9
9
  ]
@@ -9,7 +9,7 @@ from .glem import GLEM
9
9
  from .protein_mpnn import ProteinMPNN
10
10
  from .git_mol import GITMol
11
11
 
12
- __all__ = [
12
+ __all__ = classes = [
13
13
  'SentenceTransformer',
14
14
  'VisionTransformer',
15
15
  'LLM',
@@ -15,6 +15,13 @@ class PoolingStrategy(Enum):
15
15
 
16
16
 
17
17
  class SentenceTransformer(torch.nn.Module):
18
+ r"""A wrapper around a Sentence-Transformer from HuggingFace.
19
+
20
+ Args:
21
+ model_name (str): The HuggingFace model name, *e.g.*, :obj:`"BERT"`.
22
+ pooling_strategy (str, optional): The pooling strategy to use
23
+ for generating node embeddings. (default: :obj:`"mean"`)
24
+ """
18
25
  def __init__(
19
26
  self,
20
27
  model_name: str,
@@ -5,6 +5,11 @@ from torch import Tensor
5
5
 
6
6
 
7
7
  class VisionTransformer(torch.nn.Module):
8
+ r"""A wrapper around a Vision-Transformer from HuggingFace.
9
+
10
+ Args:
11
+ model_name (str): The HuggingFace model name, *e.g.*, :obj:`"ViT"`.
12
+ """
8
13
  def __init__(
9
14
  self,
10
15
  model_name: str,
@@ -0,0 +1,10 @@
1
+ from .backend_utils import * # noqa
2
+ from .feature_store import KNNRAGFeatureStore
3
+ from .graph_store import NeighborSamplingRAGGraphStore
4
+ from .vectorrag import DocumentRetriever
5
+
6
+ __all__ = classes = [
7
+ 'KNNRAGFeatureStore',
8
+ 'NeighborSamplingRAGGraphStore',
9
+ 'DocumentRetriever',
10
+ ]
@@ -79,11 +79,11 @@ class KNNRAGFeatureStore(LocalFeatureStore):
79
79
  """Retrieves the k_nodes most similar nodes to the given query.
80
80
 
81
81
  Args:
82
- - query (Union[str, List[str], Tuple[str]]):
83
- The query or list of queries to search for.
82
+ query (Union[str, List[str], Tuple[str]]): The query
83
+ or list of queries to search for.
84
84
 
85
85
  Returns:
86
- - The indices of the most similar nodes and the encoded query
86
+ The indices of the most similar nodes and the encoded query
87
87
  """
88
88
  if not isinstance(query, (list, tuple)):
89
89
  query = [query]
@@ -130,12 +130,12 @@ class KNNRAGFeatureStore(LocalFeatureStore):
130
130
  """Loads a subgraph from the given sample.
131
131
 
132
132
  Args:
133
- - sample: The sample to load the subgraph from.
134
- - induced: Whether to return the induced subgraph.
135
- Resets node and edge ids.
133
+ sample: The sample to load the subgraph from.
134
+ induced: Whether to return the induced subgraph.
135
+ Resets node and edge ids.
136
136
 
137
137
  Returns:
138
- - The loaded subgraph.
138
+ The loaded subgraph.
139
139
  """
140
140
  if isinstance(sample, HeteroSamplerOutput):
141
141
  raise NotImplementedError
@@ -8,6 +8,7 @@ from .encoding import PositionalEncoding, TemporalEncoding
8
8
  from .summary import summary
9
9
 
10
10
  from .aggr import * # noqa
11
+ from .attention import * # noqa
11
12
  from .conv import * # noqa
12
13
  from .pool import * # noqa
13
14
  from .glob import * # noqa
@@ -3,7 +3,7 @@ from .qformer import QFormer
3
3
  from .sgformer import SGFormerAttention
4
4
  from .polynormer import PolynormerAttention
5
5
 
6
- __all__ = [
6
+ __all__ = classes = [
7
7
  'PerformerAttention',
8
8
  'QFormer',
9
9
  'SGFormerAttention',
@@ -4,6 +4,11 @@ from typing import Optional
4
4
  import torch
5
5
  from torch import Tensor
6
6
 
7
+ __all__ = classes = [
8
+ 'PositionalEncoding',
9
+ 'TemporalEncoding',
10
+ ]
11
+
7
12
 
8
13
  class PositionalEncoding(torch.nn.Module):
9
14
  r"""The positional encoding scheme from the `"Attention Is All You Need"