pyg-nightly 2.7.0.dev20250908__py3-none-any.whl → 2.7.0.dev20250910__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250908.dist-info → pyg_nightly-2.7.0.dev20250910.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250908.dist-info → pyg_nightly-2.7.0.dev20250910.dist-info}/RECORD +14 -13
- torch_geometric/__init__.py +1 -1
- torch_geometric/llm/__init__.py +2 -2
- torch_geometric/llm/models/__init__.py +1 -1
- torch_geometric/llm/models/sentence_transformer.py +7 -0
- torch_geometric/llm/models/vision_transformer.py +5 -0
- torch_geometric/llm/utils/__init__.py +10 -0
- torch_geometric/llm/utils/feature_store.py +7 -7
- torch_geometric/nn/__init__.py +1 -0
- torch_geometric/nn/attention/__init__.py +1 -1
- torch_geometric/nn/encoding.py +5 -0
- {pyg_nightly-2.7.0.dev20250908.dist-info → pyg_nightly-2.7.0.dev20250910.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250908.dist-info → pyg_nightly-2.7.0.dev20250910.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250908.dist-info → pyg_nightly-2.7.0.dev20250910.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250910
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=6DYZWRpxtgSBbAwl2eIiEylFG48gBD1uBNmuBQhahx4,2292
|
2
2
|
torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
|
3
3
|
torch_geometric/_onnx.py,sha256=ODB_8cwFUiwBUjngXn6-K5HHb7IDul7DDXuuGX7vj_0,8178
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -267,10 +267,10 @@ torch_geometric/io/ply.py,sha256=NdeTtr79vJ1HS37ZV2N61EUmA5NGJd2I6cUj1Pg7Ypg,489
|
|
267
267
|
torch_geometric/io/sdf.py,sha256=H2PC6dSW9Kncc1ulb0UN0JnTRT93NY2fY8lf6K4hb50,1165
|
268
268
|
torch_geometric/io/tu.py,sha256=-v5Ago7DfmGTRBtB5RZFvmv4XpLnKKnk-NOnxlHtB_c,4881
|
269
269
|
torch_geometric/io/txt_array.py,sha256=LDeX2qtlNKW-kVe-wpnskMwAdXQp1jVCGQnrJce7Smg,910
|
270
|
-
torch_geometric/llm/__init__.py,sha256=
|
270
|
+
torch_geometric/llm/__init__.py,sha256=qOCyBeWO8vcUTI71DLv1-lrssWoAqIyE1JTuzHM4rDU,221
|
271
271
|
torch_geometric/llm/large_graph_indexer.py,sha256=ip5wU7Rj4S1tFc53AqAtvyvGqeVC7AJrVMEbRTHyz54,28429
|
272
272
|
torch_geometric/llm/rag_loader.py,sha256=lsUt5kvHGbQzxOuWubBVB0RkMcTi6b4RNRuvsArw3Ys,5641
|
273
|
-
torch_geometric/llm/models/__init__.py,sha256=
|
273
|
+
torch_geometric/llm/models/__init__.py,sha256=Xb2GacStLOYCAu34NNzG-zog-zapXh1asl3S6_eLMsc,547
|
274
274
|
torch_geometric/llm/models/g_retriever.py,sha256=SeW0rlrlzMhN3aVslhq_GUyUgS4sVw_nMAT5YiXzZd8,9072
|
275
275
|
torch_geometric/llm/models/git_mol.py,sha256=m1YJb6Xb2i6j9wEqHzqE4YBWMr9i1CJpMp6T-E24fsA,12680
|
276
276
|
torch_geometric/llm/models/glem.py,sha256=GlL_I63g-_5eTycSGRj720YntldQ-CQ351RaDPc6XAU,16674
|
@@ -278,11 +278,12 @@ torch_geometric/llm/models/llm.py,sha256=LKYdUSw2PSWYEN13DYYaJt0dHRQTptX6mM1rAh7
|
|
278
278
|
torch_geometric/llm/models/llm_judge.py,sha256=qhc8hmIPNhcfLVRyBVk7jQW7ncoIb9QYw7rcsGAIpyg,6457
|
279
279
|
torch_geometric/llm/models/molecule_gpt.py,sha256=RWoP4RMsoRzZtuedPCLNCfooqibCqxkuAhH-pyek9No,7641
|
280
280
|
torch_geometric/llm/models/protein_mpnn.py,sha256=SwTgafSbI2KJ-yqzn0trZtVWLmfo0_kPEaWSNJUCt70,12266
|
281
|
-
torch_geometric/llm/models/sentence_transformer.py,sha256=
|
281
|
+
torch_geometric/llm/models/sentence_transformer.py,sha256=TSXBxeTktj10YU-h_1prdMCCmAG8MTOKMm760ch4g30,6377
|
282
282
|
torch_geometric/llm/models/txt2kg.py,sha256=CjWXCa_WrqIlBfOSPMAK-mnaX19dvH_YhXMWSuLkk4o,14074
|
283
|
-
torch_geometric/llm/models/vision_transformer.py,sha256=
|
283
|
+
torch_geometric/llm/models/vision_transformer.py,sha256=aPuVfpSwGR96KaicRYut49g6ShrCklbouaLwyPuwhBQ,1022
|
284
|
+
torch_geometric/llm/utils/__init__.py,sha256=P5By_n15MqkUU1tfh87PGE--J7RVygPeDSBOTy_VlZ0,292
|
284
285
|
torch_geometric/llm/utils/backend_utils.py,sha256=AcvZ8ym3UKCWwWoMl8sNRnj4FSl0_srHw9yxZAKiyeU,15840
|
285
|
-
torch_geometric/llm/utils/feature_store.py,sha256=
|
286
|
+
torch_geometric/llm/utils/feature_store.py,sha256=d60n3TlclEhlqoDEHKmvvGI6t8r0nur1BNwXyqqtj24,5903
|
286
287
|
torch_geometric/llm/utils/graph_store.py,sha256=_Hh0aGnokUn0zvOC80xUfT4TtX_7G4KIDoEBkNXkgHY,7103
|
287
288
|
torch_geometric/llm/utils/vectorrag.py,sha256=m51drMNXsGQTN6qkbR8QiHb8jvcrBlZDHzEjsEmtnes,4753
|
288
289
|
torch_geometric/loader/__init__.py,sha256=w9LSTbyrLRkyrLXi_10d80csWgfKOKDRQDJXRdcfD0M,1835
|
@@ -311,9 +312,9 @@ torch_geometric/loader/utils.py,sha256=3hzKzIgB52QIZu7Jdn4JeXZaegIJinIQfIUP9DrUW
|
|
311
312
|
torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
|
312
313
|
torch_geometric/metrics/__init__.py,sha256=3krvDobW6vV5yHTjq2S2pmOXxNfysNG26muq7z48e94,699
|
313
314
|
torch_geometric/metrics/link_pred.py,sha256=1_hE3KiRqAdZLI6QuUbjgyFC__mTyFu_RimM3bD8wRw,31678
|
314
|
-
torch_geometric/nn/__init__.py,sha256=
|
315
|
+
torch_geometric/nn/__init__.py,sha256=tTEKDy4vpjPNKyG1Vg9GIx7dVFJuQtBoh2M19ascGpo,880
|
315
316
|
torch_geometric/nn/data_parallel.py,sha256=YiybTWoSFyfSzlXAamZ_-y1f7B6tvDEFHOuy_AyJz9Q,4761
|
316
|
-
torch_geometric/nn/encoding.py,sha256=
|
317
|
+
torch_geometric/nn/encoding.py,sha256=82fpwyOx0-STFSAJ5AzG0p2WFC9u1M4KgmKIql8hSLc,3634
|
317
318
|
torch_geometric/nn/fx.py,sha256=PDtaHJAgodh4xf8FNl4fVxPGZJDbRaq3Q9z8qb1DNNI,16063
|
318
319
|
torch_geometric/nn/glob.py,sha256=MdHjcUlHmFmTevzwND1_x7dXXJPzIDTBJRGOrGdZ8dQ,1088
|
319
320
|
torch_geometric/nn/inits.py,sha256=_8FqacCLPz5Ft2zB5s6dtKGTKWtfrLyCLLuv1QvyKjk,2457
|
@@ -351,7 +352,7 @@ torch_geometric/nn/aggr/set_transformer.py,sha256=FG7_JizpFX14M6VSCwLSjYXYdJ1ZiQ
|
|
351
352
|
torch_geometric/nn/aggr/sort.py,sha256=bvOOWnFkNOBOZih4rqVZQsjfeDX3vmXo1bpPSFD846w,2507
|
352
353
|
torch_geometric/nn/aggr/utils.py,sha256=SQvdc0g6p_E2j0prA14MW2ekjEDvV-g545N0Q85uc-o,8625
|
353
354
|
torch_geometric/nn/aggr/variance_preserving.py,sha256=fu-U_aGYpVLpgSFvVg0ONMe6nqoyv8tZ6Y35qMYTf9w,1126
|
354
|
-
torch_geometric/nn/attention/__init__.py,sha256=
|
355
|
+
torch_geometric/nn/attention/__init__.py,sha256=smNHoLd_JsPB83BOS9SKS9AQm17xAWbpi2NOoAhnvL0,273
|
355
356
|
torch_geometric/nn/attention/performer.py,sha256=2PCDn4_-oNTao2-DkXIaoi18anP01OxRELF2pvp-jk8,7357
|
356
357
|
torch_geometric/nn/attention/polynormer.py,sha256=uBxGs0nldp6oGlByqbxgEk23VeXLEd6B3myS5BOKDRs,3998
|
357
358
|
torch_geometric/nn/attention/qformer.py,sha256=7J-pWm_vpumK38IC-iCBz4oqL-BEIofEIxJ0wfjWq9A,2338
|
@@ -653,7 +654,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
653
654
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
654
655
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
655
656
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
656
|
-
pyg_nightly-2.7.0.
|
657
|
-
pyg_nightly-2.7.0.
|
658
|
-
pyg_nightly-2.7.0.
|
659
|
-
pyg_nightly-2.7.0.
|
657
|
+
pyg_nightly-2.7.0.dev20250910.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
658
|
+
pyg_nightly-2.7.0.dev20250910.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
659
|
+
pyg_nightly-2.7.0.dev20250910.dist-info/METADATA,sha256=uuM-Hir5cz3xHjKnxcV5W027kHC71PY4M6eMzMVTlwg,64145
|
660
|
+
pyg_nightly-2.7.0.dev20250910.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250910'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
torch_geometric/llm/__init__.py
CHANGED
@@ -15,6 +15,13 @@ class PoolingStrategy(Enum):
|
|
15
15
|
|
16
16
|
|
17
17
|
class SentenceTransformer(torch.nn.Module):
|
18
|
+
r"""A wrapper around a Sentence-Transformer from HuggingFace.
|
19
|
+
|
20
|
+
Args:
|
21
|
+
model_name (str): The HuggingFace model name, *e.g.*, :obj:`"BERT"`.
|
22
|
+
pooling_strategy (str, optional): The pooling strategy to use
|
23
|
+
for generating node embeddings. (default: :obj:`"mean"`)
|
24
|
+
"""
|
18
25
|
def __init__(
|
19
26
|
self,
|
20
27
|
model_name: str,
|
@@ -5,6 +5,11 @@ from torch import Tensor
|
|
5
5
|
|
6
6
|
|
7
7
|
class VisionTransformer(torch.nn.Module):
|
8
|
+
r"""A wrapper around a Vision-Transformer from HuggingFace.
|
9
|
+
|
10
|
+
Args:
|
11
|
+
model_name (str): The HuggingFace model name, *e.g.*, :obj:`"ViT"`.
|
12
|
+
"""
|
8
13
|
def __init__(
|
9
14
|
self,
|
10
15
|
model_name: str,
|
@@ -0,0 +1,10 @@
|
|
1
|
+
from .backend_utils import * # noqa
|
2
|
+
from .feature_store import KNNRAGFeatureStore
|
3
|
+
from .graph_store import NeighborSamplingRAGGraphStore
|
4
|
+
from .vectorrag import DocumentRetriever
|
5
|
+
|
6
|
+
__all__ = classes = [
|
7
|
+
'KNNRAGFeatureStore',
|
8
|
+
'NeighborSamplingRAGGraphStore',
|
9
|
+
'DocumentRetriever',
|
10
|
+
]
|
@@ -79,11 +79,11 @@ class KNNRAGFeatureStore(LocalFeatureStore):
|
|
79
79
|
"""Retrieves the k_nodes most similar nodes to the given query.
|
80
80
|
|
81
81
|
Args:
|
82
|
-
|
83
|
-
|
82
|
+
query (Union[str, List[str], Tuple[str]]): The query
|
83
|
+
or list of queries to search for.
|
84
84
|
|
85
85
|
Returns:
|
86
|
-
|
86
|
+
The indices of the most similar nodes and the encoded query
|
87
87
|
"""
|
88
88
|
if not isinstance(query, (list, tuple)):
|
89
89
|
query = [query]
|
@@ -130,12 +130,12 @@ class KNNRAGFeatureStore(LocalFeatureStore):
|
|
130
130
|
"""Loads a subgraph from the given sample.
|
131
131
|
|
132
132
|
Args:
|
133
|
-
|
134
|
-
|
135
|
-
|
133
|
+
sample: The sample to load the subgraph from.
|
134
|
+
induced: Whether to return the induced subgraph.
|
135
|
+
Resets node and edge ids.
|
136
136
|
|
137
137
|
Returns:
|
138
|
-
|
138
|
+
The loaded subgraph.
|
139
139
|
"""
|
140
140
|
if isinstance(sample, HeteroSamplerOutput):
|
141
141
|
raise NotImplementedError
|
torch_geometric/nn/__init__.py
CHANGED
torch_geometric/nn/encoding.py
CHANGED
@@ -4,6 +4,11 @@ from typing import Optional
|
|
4
4
|
import torch
|
5
5
|
from torch import Tensor
|
6
6
|
|
7
|
+
__all__ = classes = [
|
8
|
+
'PositionalEncoding',
|
9
|
+
'TemporalEncoding',
|
10
|
+
]
|
11
|
+
|
7
12
|
|
8
13
|
class PositionalEncoding(torch.nn.Module):
|
9
14
|
r"""The positional encoding scheme from the `"Attention Is All You Need"
|
File without changes
|
{pyg_nightly-2.7.0.dev20250908.dist-info → pyg_nightly-2.7.0.dev20250910.dist-info}/licenses/LICENSE
RENAMED
File without changes
|