pyg-nightly 2.7.0.dev20250807__py3-none-any.whl → 2.7.0.dev20250809__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250807
3
+ Version: 2.7.0.dev20250809
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=4N7xQ4gbjbkOCvM83lhsebAwnhEMzZKRWZRssmJdFGY,2250
1
+ torch_geometric/__init__.py,sha256=1-7ry9AKtrXHFgminsrkBibAyycSYTJoDQ3zq8lroY4,2250
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -44,7 +44,7 @@ torch_geometric/data/graph_store.py,sha256=EtIgsyY7RdBHRTCn34VypEBOG8cg8WzsNT_kT
44
44
  torch_geometric/data/hetero_data.py,sha256=2LV8pSvv-IWkTUk8xg7VeI17YMhikg1RkeQhMwA8tkE,48583
45
45
  torch_geometric/data/hypergraph_data.py,sha256=LfriiuJRx9ZrrSGj_fO5NUsh4kvyXJuRdCOqsWo__vc,8307
46
46
  torch_geometric/data/in_memory_dataset.py,sha256=ilFxjF4pvBILsS4wOqocwRBc2j6toI2S_KMFF19KB1w,13413
47
- torch_geometric/data/large_graph_indexer.py,sha256=wlLtc_4wGRuBJmdgf1n-B_JogjEpmT-nnywFOu0D6WE,25440
47
+ torch_geometric/data/large_graph_indexer.py,sha256=myXTXhbRHQPxEOHNHPeNHB_pBzXCIQBr1KQt9WwBoi8,25468
48
48
  torch_geometric/data/makedirs.py,sha256=6uOv4y34i947cm4rv7Aj2_YZBq-EOsyPKnlGA188YSw,463
49
49
  torch_geometric/data/on_disk_dataset.py,sha256=77om-e6kzcpBb77kf7um1xY8-yHmQaao_6R7I-3NwHk,6629
50
50
  torch_geometric/data/remote_backend_utils.py,sha256=Rzpq1PczXuHhUscrFtIAL6dua6pMehSJlXG7yEsrrrg,4503
@@ -645,7 +645,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
645
645
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
646
646
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
647
647
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
648
- pyg_nightly-2.7.0.dev20250807.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
649
- pyg_nightly-2.7.0.dev20250807.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
650
- pyg_nightly-2.7.0.dev20250807.dist-info/METADATA,sha256=ok5dr4s2HjR1SjHdqFYLqeaMKbn0UYwx_MtyTo5xs70,63484
651
- pyg_nightly-2.7.0.dev20250807.dist-info/RECORD,,
648
+ pyg_nightly-2.7.0.dev20250809.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
649
+ pyg_nightly-2.7.0.dev20250809.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
650
+ pyg_nightly-2.7.0.dev20250809.dist-info/METADATA,sha256=nMP5-u8rP3zJPNyqc7oXliW08kBmXo04Xp6q98_l_Ls,63484
651
+ pyg_nightly-2.7.0.dev20250809.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250807'
34
+ __version__ = '2.7.0.dev20250809'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -297,7 +297,7 @@ class LargeGraphIndexer:
297
297
  idxs = list(
298
298
  self.get_node_features_iter(feature_name, pids,
299
299
  index_only=True))
300
- return values[idxs]
300
+ return values[torch.tensor(idxs)]
301
301
  return list(self.get_node_features_iter(feature_name, pids))
302
302
 
303
303
  def get_node_features_iter(
@@ -421,7 +421,7 @@ class LargeGraphIndexer:
421
421
  idxs = list(
422
422
  self.get_edge_features_iter(feature_name, pids,
423
423
  index_only=True))
424
- return values[idxs]
424
+ return values[torch.tensor(idxs)]
425
425
  return list(self.get_edge_features_iter(feature_name, pids))
426
426
 
427
427
  def get_edge_features_iter(