pyg-nightly 2.7.0.dev20250804__py3-none-any.whl → 2.7.0.dev20250806__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250804.dist-info → pyg_nightly-2.7.0.dev20250806.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250804.dist-info → pyg_nightly-2.7.0.dev20250806.dist-info}/RECORD +9 -9
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/git_mol_dataset.py +1 -1
- torch_geometric/datasets/qm9.py +1 -1
- torch_geometric/profile/utils.py +21 -5
- torch_geometric/utils/smiles.py +1 -1
- {pyg_nightly-2.7.0.dev20250804.dist-info → pyg_nightly-2.7.0.dev20250806.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250804.dist-info → pyg_nightly-2.7.0.dev20250806.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250804.dist-info → pyg_nightly-2.7.0.dev20250806.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250806
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256
|
1
|
+
torch_geometric/__init__.py,sha256=-SBUSK-uzEZeN8Z6cKLkB8FbFo6B3slnSZkZGbRYDaA,2250
|
2
2
|
torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -95,7 +95,7 @@ torch_geometric/datasets/gdelt_lite.py,sha256=zE1WagpgmsQARQhEgdCBtALRKyuQvIZqxT
|
|
95
95
|
torch_geometric/datasets/ged_dataset.py,sha256=dtd-C6pCygNHLXgVfg3ZTWtTVHKT13Q3GlGrze1_rpo,9551
|
96
96
|
torch_geometric/datasets/gemsec.py,sha256=oMTSryTgyed9z_4ydg3ql12KM-_35uqL1AoNls5nG8M,2820
|
97
97
|
torch_geometric/datasets/geometry.py,sha256=-BxUMirZcUOf01c3avvF0b6wGPn-4S3Zj3Oau1RaJVk,4223
|
98
|
-
torch_geometric/datasets/git_mol_dataset.py,sha256=
|
98
|
+
torch_geometric/datasets/git_mol_dataset.py,sha256=dIn49U6gU2tPM7SrPyOkqoxJT1FhFGMmh9vdWnD30pY,10695
|
99
99
|
torch_geometric/datasets/github.py,sha256=Qhqhkvi6eZ8VF_HqP1rL2iYToZavFNsQh7J1WdeM9dA,2687
|
100
100
|
torch_geometric/datasets/gnn_benchmark_dataset.py,sha256=4P8n7czF-gf1egLYlAcSSvfB0GXIKpAbH5UjsuFld1M,6976
|
101
101
|
torch_geometric/datasets/heterophilous_graph_dataset.py,sha256=yHHtwl4uPrid0vPOxvPV3sIS8HWdswar8FJ0h0OQ9is,4224
|
@@ -141,7 +141,7 @@ torch_geometric/datasets/polblogs.py,sha256=IYzsvd4R0OojmOOZUoOdCwQYfwcTfth1PNtc
|
|
141
141
|
torch_geometric/datasets/ppi.py,sha256=zPtg-omC7WYvr9Tzwkb7zNjpXLODsvxKxKdGEUswp2E,5030
|
142
142
|
torch_geometric/datasets/protein_mpnn_dataset.py,sha256=TTeTVJMo0Rlt2_h9bbZMKJe3rTJcjCgY5cXGyWteBfA,17756
|
143
143
|
torch_geometric/datasets/qm7.py,sha256=bYyK8xlh9kTr5vqueNbLu9EAjIXkQH1KX1VWnjKfOJc,3323
|
144
|
-
torch_geometric/datasets/qm9.py,sha256=
|
144
|
+
torch_geometric/datasets/qm9.py,sha256=TUDQn8PkBxySNx7S2tMVzsIKYc77pJ-VfGcFoxQcpWQ,17227
|
145
145
|
torch_geometric/datasets/rcdd.py,sha256=gvOoM1tw_X5QMyBB4FkMUwNErMXAvImyjz5twktBAh8,5317
|
146
146
|
torch_geometric/datasets/reddit.py,sha256=QUgiKTaj6YTOYbgWgqV8mPYsctOui2ujaM8f8qy81v0,3131
|
147
147
|
torch_geometric/datasets/reddit2.py,sha256=WSdrhbDPcUEG37XWNUd0uKnqgI911MOcfjXmgjbTPoQ,4291
|
@@ -517,7 +517,7 @@ torch_geometric/profile/benchmark.py,sha256=EuD12qJiiPCSwkg5w8arELXiRT_QY_3Wz_rq
|
|
517
517
|
torch_geometric/profile/nvtx.py,sha256=AKBr-rqlHDnls_UM02Dfq5BZmyFTHS5Li5gaeKmsAJI,2032
|
518
518
|
torch_geometric/profile/profile.py,sha256=cHCY4U0XtyqyKC5u380q6TspsOZ5tGHNXaZsKuzYi1A,11793
|
519
519
|
torch_geometric/profile/profiler.py,sha256=rfNciRzWDka_BgO6aPFi3cy8mcT4lSgFWy-WfPgI2SI,16891
|
520
|
-
torch_geometric/profile/utils.py,sha256=
|
520
|
+
torch_geometric/profile/utils.py,sha256=ynlUVemNJZ6XjJKIkPJNwFPoUyBgVAnchfHBpKOp_HE,5903
|
521
521
|
torch_geometric/sampler/__init__.py,sha256=0h_xJ7CQnlTxF5hUpc81WPQ0QaBtouG8eKK1RzPGA-s,512
|
522
522
|
torch_geometric/sampler/base.py,sha256=T7RMx14RSlEKlQUkMvR1EzREaXi14VgR5GIwLfvbXzQ,27055
|
523
523
|
torch_geometric/sampler/hgt_sampler.py,sha256=jizRJyEoz4WBOEELuqdytG2hB3UpVQX7yVPM83kvpfE,2991
|
@@ -639,13 +639,13 @@ torch_geometric/utils/num_nodes.py,sha256=F15ciTFOe8AxjkUh1wKH7RLmJvQYYpz-l3pPPv
|
|
639
639
|
torch_geometric/utils/ppr.py,sha256=ebiHbQqRJsQbGUI5xu-IkzQSQsgIaC71vgO0KcXIKAk,4055
|
640
640
|
torch_geometric/utils/random.py,sha256=Rv5HlhG5310rytbT9EZ7xWLGKQfozfz1azvYi5nx2-U,5148
|
641
641
|
torch_geometric/utils/repeat.py,sha256=RxCoRoEisaP6NouXPPW5tY1Rn-tIfrmpJPm0qGP6W8M,815
|
642
|
-
torch_geometric/utils/smiles.py,sha256=
|
642
|
+
torch_geometric/utils/smiles.py,sha256=3LBvoy9N5ZA-tLjXDUDasNPkyEvL_VyIjRvS_g4MRt0,7144
|
643
643
|
torch_geometric/utils/sparse.py,sha256=1DbaEwdyvnzvg5qVjPlnWcEVDMkxrQLX1jJ0dr6P4js,25135
|
644
644
|
torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5nUAUjw,6222
|
645
645
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
646
646
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
647
647
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
648
|
-
pyg_nightly-2.7.0.
|
649
|
-
pyg_nightly-2.7.0.
|
650
|
-
pyg_nightly-2.7.0.
|
651
|
-
pyg_nightly-2.7.0.
|
648
|
+
pyg_nightly-2.7.0.dev20250806.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
649
|
+
pyg_nightly-2.7.0.dev20250806.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
650
|
+
pyg_nightly-2.7.0.dev20250806.dist-info/METADATA,sha256=IY8ra_cU1lz1W4NbKFu4RGfIO_uMxvpzrrAkn4CQr28,63484
|
651
|
+
pyg_nightly-2.7.0.dev20250806.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250806'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
torch_geometric/datasets/qm9.py
CHANGED
@@ -202,7 +202,7 @@ class QM9(InMemoryDataset):
|
|
202
202
|
from rdkit import Chem, RDLogger
|
203
203
|
from rdkit.Chem.rdchem import BondType as BT
|
204
204
|
from rdkit.Chem.rdchem import HybridizationType
|
205
|
-
RDLogger.DisableLog('rdApp.*')
|
205
|
+
RDLogger.DisableLog('rdApp.*') # type: ignore[attr-defined]
|
206
206
|
WITH_RDKIT = True
|
207
207
|
|
208
208
|
except ImportError:
|
torch_geometric/profile/utils.py
CHANGED
@@ -119,19 +119,35 @@ def get_gpu_memory_from_nvidia_smi( # pragma: no cover
|
|
119
119
|
digits (int): The number of decimals to use for megabytes.
|
120
120
|
(default: :obj:`2`)
|
121
121
|
"""
|
122
|
+
def parse_memory(output: str) -> list:
|
123
|
+
lines = output.decode('utf-8').split('\n')[1:-1]
|
124
|
+
mem_list = []
|
125
|
+
for line in lines:
|
126
|
+
val = line.split()[0]
|
127
|
+
if val != '[N/A]':
|
128
|
+
mem_list.append(int(val))
|
129
|
+
else:
|
130
|
+
mem_list.append(None)
|
131
|
+
return mem_list
|
132
|
+
|
133
|
+
def get_gpu_memory(out_device, digits):
|
134
|
+
if out_device is None:
|
135
|
+
return 0
|
136
|
+
|
137
|
+
return medibyte_to_megabyte(out_device, digits)
|
138
|
+
|
122
139
|
CMD = 'nvidia-smi --query-gpu=memory.free --format=csv'
|
123
|
-
free_out = sp.check_output(CMD.split())
|
140
|
+
free_out = parse_memory(sp.check_output(CMD.split()))
|
124
141
|
|
125
142
|
CMD = 'nvidia-smi --query-gpu=memory.used --format=csv'
|
126
|
-
used_out = sp.check_output(CMD.split())
|
143
|
+
used_out = parse_memory(sp.check_output(CMD.split()))
|
127
144
|
|
128
145
|
if device < 0 or device >= len(free_out):
|
129
146
|
raise AttributeError(
|
130
147
|
f'GPU {device} not available (found {len(free_out)} GPUs)')
|
131
148
|
|
132
|
-
free_mem =
|
133
|
-
used_mem =
|
134
|
-
|
149
|
+
free_mem = get_gpu_memory(free_out[device], digits)
|
150
|
+
used_mem = get_gpu_memory(used_out[device], digits)
|
135
151
|
return free_mem, used_mem
|
136
152
|
|
137
153
|
|
torch_geometric/utils/smiles.py
CHANGED
File without changes
|
{pyg_nightly-2.7.0.dev20250804.dist-info → pyg_nightly-2.7.0.dev20250806.dist-info}/licenses/LICENSE
RENAMED
File without changes
|