pyg-nightly 2.7.0.dev20250802__py3-none-any.whl → 2.7.0.dev20250807__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250802
3
+ Version: 2.7.0.dev20250807
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -97,7 +97,7 @@ ______________________________________________________________________
97
97
  [![Contributing][contributing-image]][contributing-url]
98
98
  [![Slack][slack-image]][slack-url]
99
99
 
100
- **[Documentation](https://pytorch-geometric.readthedocs.io)** | **[Paper](https://arxiv.org/abs/1903.02428)** | **[Colab Notebooks and Video Tutorials](https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html)** | **[External Resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html)** | **[OGB Examples](https://github.com/snap-stanford/ogb/tree/master/examples)**
100
+ **[Documentation](https://pytorch-geometric.readthedocs.io)** | **[PyG 1.0 Paper](https://arxiv.org/abs/1903.02428)** | **[PyG 2.0 Paper](https://arxiv.org/abs/2507.16991)** | **[Colab Notebooks](https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html)** | **[External Resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html)** | **[OGB Examples](https://github.com/snap-stanford/ogb/tree/master/examples)**
101
101
 
102
102
  **PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
103
103
 
@@ -506,7 +506,7 @@ If you have any questions about it, please open an issue [here](https://github.c
506
506
 
507
507
  ## Cite
508
508
 
509
- Please cite [our paper](https://arxiv.org/abs/1903.02428) (and the respective papers of the methods used) if you use this code in your own work:
509
+ Please cite our [PyG 1.0](https://arxiv.org/abs/1903.02428) and [PyG 2.0](https://www.arxiv.org/abs/2507.16991) papers if you use this code in your own work:
510
510
 
511
511
  ```
512
512
  @inproceedings{Fey/Lenssen/2019,
@@ -515,6 +515,13 @@ Please cite [our paper](https://arxiv.org/abs/1903.02428) (and the respective pa
515
515
  booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds},
516
516
  year={2019},
517
517
  }
518
+
519
+ @inproceedings{Fey/etal/2025,
520
+ title={{PyG} 2.0: Scalable Learning on Real World Graphs},
521
+ author={Fey, Matthias and Sunil, Jinu and Nitta, Akihiro and Puri, Rishi and Shah, Manan, and Stojanovi{\v{c}, Bla{\v{z} and Bendias, Ramona and Alexandria, Barghi and Kocijan, Vid and Zhang, Zecheng and He, Xinwei and Lenssen, Jan E. and Leskovec, Jure},
522
+ booktitle={Temporal Graph Learning Workshop @ KDD},
523
+ year={2025},
524
+ }
518
525
  ```
519
526
 
520
527
  Feel free to [email us](mailto:matthias.fey@tu-dortmund.de) if you wish your work to be listed in the [external resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html).
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=8kws642Wd8B2uBTHXH3YNR2m1MDTdjZ39ddqVJYcJsQ,2250
1
+ torch_geometric/__init__.py,sha256=4N7xQ4gbjbkOCvM83lhsebAwnhEMzZKRWZRssmJdFGY,2250
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -95,7 +95,7 @@ torch_geometric/datasets/gdelt_lite.py,sha256=zE1WagpgmsQARQhEgdCBtALRKyuQvIZqxT
95
95
  torch_geometric/datasets/ged_dataset.py,sha256=dtd-C6pCygNHLXgVfg3ZTWtTVHKT13Q3GlGrze1_rpo,9551
96
96
  torch_geometric/datasets/gemsec.py,sha256=oMTSryTgyed9z_4ydg3ql12KM-_35uqL1AoNls5nG8M,2820
97
97
  torch_geometric/datasets/geometry.py,sha256=-BxUMirZcUOf01c3avvF0b6wGPn-4S3Zj3Oau1RaJVk,4223
98
- torch_geometric/datasets/git_mol_dataset.py,sha256=l5u4U86tfjJdHtQPN7SM3Yjv25LD1Idtm7VHaqJqNik,10665
98
+ torch_geometric/datasets/git_mol_dataset.py,sha256=dIn49U6gU2tPM7SrPyOkqoxJT1FhFGMmh9vdWnD30pY,10695
99
99
  torch_geometric/datasets/github.py,sha256=Qhqhkvi6eZ8VF_HqP1rL2iYToZavFNsQh7J1WdeM9dA,2687
100
100
  torch_geometric/datasets/gnn_benchmark_dataset.py,sha256=4P8n7czF-gf1egLYlAcSSvfB0GXIKpAbH5UjsuFld1M,6976
101
101
  torch_geometric/datasets/heterophilous_graph_dataset.py,sha256=yHHtwl4uPrid0vPOxvPV3sIS8HWdswar8FJ0h0OQ9is,4224
@@ -141,7 +141,7 @@ torch_geometric/datasets/polblogs.py,sha256=IYzsvd4R0OojmOOZUoOdCwQYfwcTfth1PNtc
141
141
  torch_geometric/datasets/ppi.py,sha256=zPtg-omC7WYvr9Tzwkb7zNjpXLODsvxKxKdGEUswp2E,5030
142
142
  torch_geometric/datasets/protein_mpnn_dataset.py,sha256=TTeTVJMo0Rlt2_h9bbZMKJe3rTJcjCgY5cXGyWteBfA,17756
143
143
  torch_geometric/datasets/qm7.py,sha256=bYyK8xlh9kTr5vqueNbLu9EAjIXkQH1KX1VWnjKfOJc,3323
144
- torch_geometric/datasets/qm9.py,sha256=Ub1t8KNeWFZvw50_Qk-80yNFeYFDwdAeyQtp3JHZs7o,17197
144
+ torch_geometric/datasets/qm9.py,sha256=TUDQn8PkBxySNx7S2tMVzsIKYc77pJ-VfGcFoxQcpWQ,17227
145
145
  torch_geometric/datasets/rcdd.py,sha256=gvOoM1tw_X5QMyBB4FkMUwNErMXAvImyjz5twktBAh8,5317
146
146
  torch_geometric/datasets/reddit.py,sha256=QUgiKTaj6YTOYbgWgqV8mPYsctOui2ujaM8f8qy81v0,3131
147
147
  torch_geometric/datasets/reddit2.py,sha256=WSdrhbDPcUEG37XWNUd0uKnqgI911MOcfjXmgjbTPoQ,4291
@@ -517,7 +517,7 @@ torch_geometric/profile/benchmark.py,sha256=EuD12qJiiPCSwkg5w8arELXiRT_QY_3Wz_rq
517
517
  torch_geometric/profile/nvtx.py,sha256=AKBr-rqlHDnls_UM02Dfq5BZmyFTHS5Li5gaeKmsAJI,2032
518
518
  torch_geometric/profile/profile.py,sha256=cHCY4U0XtyqyKC5u380q6TspsOZ5tGHNXaZsKuzYi1A,11793
519
519
  torch_geometric/profile/profiler.py,sha256=rfNciRzWDka_BgO6aPFi3cy8mcT4lSgFWy-WfPgI2SI,16891
520
- torch_geometric/profile/utils.py,sha256=7h6vzTzW8vv-ZqMOz2DV8HHNgC9ViOrN7IR9d3BPDZ8,5497
520
+ torch_geometric/profile/utils.py,sha256=ynlUVemNJZ6XjJKIkPJNwFPoUyBgVAnchfHBpKOp_HE,5903
521
521
  torch_geometric/sampler/__init__.py,sha256=0h_xJ7CQnlTxF5hUpc81WPQ0QaBtouG8eKK1RzPGA-s,512
522
522
  torch_geometric/sampler/base.py,sha256=T7RMx14RSlEKlQUkMvR1EzREaXi14VgR5GIwLfvbXzQ,27055
523
523
  torch_geometric/sampler/hgt_sampler.py,sha256=jizRJyEoz4WBOEELuqdytG2hB3UpVQX7yVPM83kvpfE,2991
@@ -639,13 +639,13 @@ torch_geometric/utils/num_nodes.py,sha256=F15ciTFOe8AxjkUh1wKH7RLmJvQYYpz-l3pPPv
639
639
  torch_geometric/utils/ppr.py,sha256=ebiHbQqRJsQbGUI5xu-IkzQSQsgIaC71vgO0KcXIKAk,4055
640
640
  torch_geometric/utils/random.py,sha256=Rv5HlhG5310rytbT9EZ7xWLGKQfozfz1azvYi5nx2-U,5148
641
641
  torch_geometric/utils/repeat.py,sha256=RxCoRoEisaP6NouXPPW5tY1Rn-tIfrmpJPm0qGP6W8M,815
642
- torch_geometric/utils/smiles.py,sha256=CFqeNtSBXQtY9Ex2gQzI0La490IpVVrm01QdRYEpV7w,7114
642
+ torch_geometric/utils/smiles.py,sha256=3LBvoy9N5ZA-tLjXDUDasNPkyEvL_VyIjRvS_g4MRt0,7144
643
643
  torch_geometric/utils/sparse.py,sha256=1DbaEwdyvnzvg5qVjPlnWcEVDMkxrQLX1jJ0dr6P4js,25135
644
644
  torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5nUAUjw,6222
645
645
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
646
646
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
647
647
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
648
- pyg_nightly-2.7.0.dev20250802.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
649
- pyg_nightly-2.7.0.dev20250802.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
650
- pyg_nightly-2.7.0.dev20250802.dist-info/METADATA,sha256=VTh3QLrPH9pND0Y8BlYLUdVL3YCRF8nAgb8T8QBwSW0,63005
651
- pyg_nightly-2.7.0.dev20250802.dist-info/RECORD,,
648
+ pyg_nightly-2.7.0.dev20250807.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
649
+ pyg_nightly-2.7.0.dev20250807.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
650
+ pyg_nightly-2.7.0.dev20250807.dist-info/METADATA,sha256=ok5dr4s2HjR1SjHdqFYLqeaMKbn0UYwx_MtyTo5xs70,63484
651
+ pyg_nightly-2.7.0.dev20250807.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250802'
34
+ __version__ = '2.7.0.dev20250807'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -102,7 +102,7 @@ class GitMolDataset(InMemoryDataset):
102
102
 
103
103
  try:
104
104
  from rdkit import Chem, RDLogger
105
- RDLogger.DisableLog('rdApp.*')
105
+ RDLogger.DisableLog('rdApp.*') # type: ignore[attr-defined]
106
106
  WITH_RDKIT = True
107
107
 
108
108
  except ImportError:
@@ -202,7 +202,7 @@ class QM9(InMemoryDataset):
202
202
  from rdkit import Chem, RDLogger
203
203
  from rdkit.Chem.rdchem import BondType as BT
204
204
  from rdkit.Chem.rdchem import HybridizationType
205
- RDLogger.DisableLog('rdApp.*')
205
+ RDLogger.DisableLog('rdApp.*') # type: ignore[attr-defined]
206
206
  WITH_RDKIT = True
207
207
 
208
208
  except ImportError:
@@ -119,19 +119,35 @@ def get_gpu_memory_from_nvidia_smi( # pragma: no cover
119
119
  digits (int): The number of decimals to use for megabytes.
120
120
  (default: :obj:`2`)
121
121
  """
122
+ def parse_memory(output: str) -> list:
123
+ lines = output.decode('utf-8').split('\n')[1:-1]
124
+ mem_list = []
125
+ for line in lines:
126
+ val = line.split()[0]
127
+ if val != '[N/A]':
128
+ mem_list.append(int(val))
129
+ else:
130
+ mem_list.append(None)
131
+ return mem_list
132
+
133
+ def get_gpu_memory(out_device, digits):
134
+ if out_device is None:
135
+ return 0
136
+
137
+ return medibyte_to_megabyte(out_device, digits)
138
+
122
139
  CMD = 'nvidia-smi --query-gpu=memory.free --format=csv'
123
- free_out = sp.check_output(CMD.split()).decode('utf-8').split('\n')[1:-1]
140
+ free_out = parse_memory(sp.check_output(CMD.split()))
124
141
 
125
142
  CMD = 'nvidia-smi --query-gpu=memory.used --format=csv'
126
- used_out = sp.check_output(CMD.split()).decode('utf-8').split('\n')[1:-1]
143
+ used_out = parse_memory(sp.check_output(CMD.split()))
127
144
 
128
145
  if device < 0 or device >= len(free_out):
129
146
  raise AttributeError(
130
147
  f'GPU {device} not available (found {len(free_out)} GPUs)')
131
148
 
132
- free_mem = medibyte_to_megabyte(int(free_out[device].split()[0]), digits)
133
- used_mem = medibyte_to_megabyte(int(used_out[device].split()[0]), digits)
134
-
149
+ free_mem = get_gpu_memory(free_out[device], digits)
150
+ used_mem = get_gpu_memory(used_out[device], digits)
135
151
  return free_mem, used_mem
136
152
 
137
153
 
@@ -148,7 +148,7 @@ def from_smiles(
148
148
  """
149
149
  from rdkit import Chem, RDLogger
150
150
 
151
- RDLogger.DisableLog('rdApp.*')
151
+ RDLogger.DisableLog('rdApp.*') # type: ignore[attr-defined]
152
152
 
153
153
  mol = Chem.MolFromSmiles(smiles)
154
154