pyg-nightly 2.7.0.dev20250802__py3-none-any.whl → 2.7.0.dev20250807__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250802.dist-info → pyg_nightly-2.7.0.dev20250807.dist-info}/METADATA +10 -3
- {pyg_nightly-2.7.0.dev20250802.dist-info → pyg_nightly-2.7.0.dev20250807.dist-info}/RECORD +9 -9
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/git_mol_dataset.py +1 -1
- torch_geometric/datasets/qm9.py +1 -1
- torch_geometric/profile/utils.py +21 -5
- torch_geometric/utils/smiles.py +1 -1
- {pyg_nightly-2.7.0.dev20250802.dist-info → pyg_nightly-2.7.0.dev20250807.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250802.dist-info → pyg_nightly-2.7.0.dev20250807.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250802.dist-info → pyg_nightly-2.7.0.dev20250807.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250807
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -97,7 +97,7 @@ ______________________________________________________________________
|
|
97
97
|
[![Contributing][contributing-image]][contributing-url]
|
98
98
|
[![Slack][slack-image]][slack-url]
|
99
99
|
|
100
|
-
**[Documentation](https://pytorch-geometric.readthedocs.io)** | **[Paper](https://arxiv.org/abs/1903.02428)** | **[
|
100
|
+
**[Documentation](https://pytorch-geometric.readthedocs.io)** | **[PyG 1.0 Paper](https://arxiv.org/abs/1903.02428)** | **[PyG 2.0 Paper](https://arxiv.org/abs/2507.16991)** | **[Colab Notebooks](https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html)** | **[External Resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html)** | **[OGB Examples](https://github.com/snap-stanford/ogb/tree/master/examples)**
|
101
101
|
|
102
102
|
**PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
|
103
103
|
|
@@ -506,7 +506,7 @@ If you have any questions about it, please open an issue [here](https://github.c
|
|
506
506
|
|
507
507
|
## Cite
|
508
508
|
|
509
|
-
Please cite
|
509
|
+
Please cite our [PyG 1.0](https://arxiv.org/abs/1903.02428) and [PyG 2.0](https://www.arxiv.org/abs/2507.16991) papers if you use this code in your own work:
|
510
510
|
|
511
511
|
```
|
512
512
|
@inproceedings{Fey/Lenssen/2019,
|
@@ -515,6 +515,13 @@ Please cite [our paper](https://arxiv.org/abs/1903.02428) (and the respective pa
|
|
515
515
|
booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds},
|
516
516
|
year={2019},
|
517
517
|
}
|
518
|
+
|
519
|
+
@inproceedings{Fey/etal/2025,
|
520
|
+
title={{PyG} 2.0: Scalable Learning on Real World Graphs},
|
521
|
+
author={Fey, Matthias and Sunil, Jinu and Nitta, Akihiro and Puri, Rishi and Shah, Manan, and Stojanovi{\v{c}, Bla{\v{z} and Bendias, Ramona and Alexandria, Barghi and Kocijan, Vid and Zhang, Zecheng and He, Xinwei and Lenssen, Jan E. and Leskovec, Jure},
|
522
|
+
booktitle={Temporal Graph Learning Workshop @ KDD},
|
523
|
+
year={2025},
|
524
|
+
}
|
518
525
|
```
|
519
526
|
|
520
527
|
Feel free to [email us](mailto:matthias.fey@tu-dortmund.de) if you wish your work to be listed in the [external resources](https://pytorch-geometric.readthedocs.io/en/latest/external/resources.html).
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=4N7xQ4gbjbkOCvM83lhsebAwnhEMzZKRWZRssmJdFGY,2250
|
2
2
|
torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -95,7 +95,7 @@ torch_geometric/datasets/gdelt_lite.py,sha256=zE1WagpgmsQARQhEgdCBtALRKyuQvIZqxT
|
|
95
95
|
torch_geometric/datasets/ged_dataset.py,sha256=dtd-C6pCygNHLXgVfg3ZTWtTVHKT13Q3GlGrze1_rpo,9551
|
96
96
|
torch_geometric/datasets/gemsec.py,sha256=oMTSryTgyed9z_4ydg3ql12KM-_35uqL1AoNls5nG8M,2820
|
97
97
|
torch_geometric/datasets/geometry.py,sha256=-BxUMirZcUOf01c3avvF0b6wGPn-4S3Zj3Oau1RaJVk,4223
|
98
|
-
torch_geometric/datasets/git_mol_dataset.py,sha256=
|
98
|
+
torch_geometric/datasets/git_mol_dataset.py,sha256=dIn49U6gU2tPM7SrPyOkqoxJT1FhFGMmh9vdWnD30pY,10695
|
99
99
|
torch_geometric/datasets/github.py,sha256=Qhqhkvi6eZ8VF_HqP1rL2iYToZavFNsQh7J1WdeM9dA,2687
|
100
100
|
torch_geometric/datasets/gnn_benchmark_dataset.py,sha256=4P8n7czF-gf1egLYlAcSSvfB0GXIKpAbH5UjsuFld1M,6976
|
101
101
|
torch_geometric/datasets/heterophilous_graph_dataset.py,sha256=yHHtwl4uPrid0vPOxvPV3sIS8HWdswar8FJ0h0OQ9is,4224
|
@@ -141,7 +141,7 @@ torch_geometric/datasets/polblogs.py,sha256=IYzsvd4R0OojmOOZUoOdCwQYfwcTfth1PNtc
|
|
141
141
|
torch_geometric/datasets/ppi.py,sha256=zPtg-omC7WYvr9Tzwkb7zNjpXLODsvxKxKdGEUswp2E,5030
|
142
142
|
torch_geometric/datasets/protein_mpnn_dataset.py,sha256=TTeTVJMo0Rlt2_h9bbZMKJe3rTJcjCgY5cXGyWteBfA,17756
|
143
143
|
torch_geometric/datasets/qm7.py,sha256=bYyK8xlh9kTr5vqueNbLu9EAjIXkQH1KX1VWnjKfOJc,3323
|
144
|
-
torch_geometric/datasets/qm9.py,sha256=
|
144
|
+
torch_geometric/datasets/qm9.py,sha256=TUDQn8PkBxySNx7S2tMVzsIKYc77pJ-VfGcFoxQcpWQ,17227
|
145
145
|
torch_geometric/datasets/rcdd.py,sha256=gvOoM1tw_X5QMyBB4FkMUwNErMXAvImyjz5twktBAh8,5317
|
146
146
|
torch_geometric/datasets/reddit.py,sha256=QUgiKTaj6YTOYbgWgqV8mPYsctOui2ujaM8f8qy81v0,3131
|
147
147
|
torch_geometric/datasets/reddit2.py,sha256=WSdrhbDPcUEG37XWNUd0uKnqgI911MOcfjXmgjbTPoQ,4291
|
@@ -517,7 +517,7 @@ torch_geometric/profile/benchmark.py,sha256=EuD12qJiiPCSwkg5w8arELXiRT_QY_3Wz_rq
|
|
517
517
|
torch_geometric/profile/nvtx.py,sha256=AKBr-rqlHDnls_UM02Dfq5BZmyFTHS5Li5gaeKmsAJI,2032
|
518
518
|
torch_geometric/profile/profile.py,sha256=cHCY4U0XtyqyKC5u380q6TspsOZ5tGHNXaZsKuzYi1A,11793
|
519
519
|
torch_geometric/profile/profiler.py,sha256=rfNciRzWDka_BgO6aPFi3cy8mcT4lSgFWy-WfPgI2SI,16891
|
520
|
-
torch_geometric/profile/utils.py,sha256=
|
520
|
+
torch_geometric/profile/utils.py,sha256=ynlUVemNJZ6XjJKIkPJNwFPoUyBgVAnchfHBpKOp_HE,5903
|
521
521
|
torch_geometric/sampler/__init__.py,sha256=0h_xJ7CQnlTxF5hUpc81WPQ0QaBtouG8eKK1RzPGA-s,512
|
522
522
|
torch_geometric/sampler/base.py,sha256=T7RMx14RSlEKlQUkMvR1EzREaXi14VgR5GIwLfvbXzQ,27055
|
523
523
|
torch_geometric/sampler/hgt_sampler.py,sha256=jizRJyEoz4WBOEELuqdytG2hB3UpVQX7yVPM83kvpfE,2991
|
@@ -639,13 +639,13 @@ torch_geometric/utils/num_nodes.py,sha256=F15ciTFOe8AxjkUh1wKH7RLmJvQYYpz-l3pPPv
|
|
639
639
|
torch_geometric/utils/ppr.py,sha256=ebiHbQqRJsQbGUI5xu-IkzQSQsgIaC71vgO0KcXIKAk,4055
|
640
640
|
torch_geometric/utils/random.py,sha256=Rv5HlhG5310rytbT9EZ7xWLGKQfozfz1azvYi5nx2-U,5148
|
641
641
|
torch_geometric/utils/repeat.py,sha256=RxCoRoEisaP6NouXPPW5tY1Rn-tIfrmpJPm0qGP6W8M,815
|
642
|
-
torch_geometric/utils/smiles.py,sha256=
|
642
|
+
torch_geometric/utils/smiles.py,sha256=3LBvoy9N5ZA-tLjXDUDasNPkyEvL_VyIjRvS_g4MRt0,7144
|
643
643
|
torch_geometric/utils/sparse.py,sha256=1DbaEwdyvnzvg5qVjPlnWcEVDMkxrQLX1jJ0dr6P4js,25135
|
644
644
|
torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5nUAUjw,6222
|
645
645
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
646
646
|
torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
|
647
647
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
648
|
-
pyg_nightly-2.7.0.
|
649
|
-
pyg_nightly-2.7.0.
|
650
|
-
pyg_nightly-2.7.0.
|
651
|
-
pyg_nightly-2.7.0.
|
648
|
+
pyg_nightly-2.7.0.dev20250807.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
649
|
+
pyg_nightly-2.7.0.dev20250807.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
650
|
+
pyg_nightly-2.7.0.dev20250807.dist-info/METADATA,sha256=ok5dr4s2HjR1SjHdqFYLqeaMKbn0UYwx_MtyTo5xs70,63484
|
651
|
+
pyg_nightly-2.7.0.dev20250807.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250807'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
torch_geometric/datasets/qm9.py
CHANGED
@@ -202,7 +202,7 @@ class QM9(InMemoryDataset):
|
|
202
202
|
from rdkit import Chem, RDLogger
|
203
203
|
from rdkit.Chem.rdchem import BondType as BT
|
204
204
|
from rdkit.Chem.rdchem import HybridizationType
|
205
|
-
RDLogger.DisableLog('rdApp.*')
|
205
|
+
RDLogger.DisableLog('rdApp.*') # type: ignore[attr-defined]
|
206
206
|
WITH_RDKIT = True
|
207
207
|
|
208
208
|
except ImportError:
|
torch_geometric/profile/utils.py
CHANGED
@@ -119,19 +119,35 @@ def get_gpu_memory_from_nvidia_smi( # pragma: no cover
|
|
119
119
|
digits (int): The number of decimals to use for megabytes.
|
120
120
|
(default: :obj:`2`)
|
121
121
|
"""
|
122
|
+
def parse_memory(output: str) -> list:
|
123
|
+
lines = output.decode('utf-8').split('\n')[1:-1]
|
124
|
+
mem_list = []
|
125
|
+
for line in lines:
|
126
|
+
val = line.split()[0]
|
127
|
+
if val != '[N/A]':
|
128
|
+
mem_list.append(int(val))
|
129
|
+
else:
|
130
|
+
mem_list.append(None)
|
131
|
+
return mem_list
|
132
|
+
|
133
|
+
def get_gpu_memory(out_device, digits):
|
134
|
+
if out_device is None:
|
135
|
+
return 0
|
136
|
+
|
137
|
+
return medibyte_to_megabyte(out_device, digits)
|
138
|
+
|
122
139
|
CMD = 'nvidia-smi --query-gpu=memory.free --format=csv'
|
123
|
-
free_out = sp.check_output(CMD.split())
|
140
|
+
free_out = parse_memory(sp.check_output(CMD.split()))
|
124
141
|
|
125
142
|
CMD = 'nvidia-smi --query-gpu=memory.used --format=csv'
|
126
|
-
used_out = sp.check_output(CMD.split())
|
143
|
+
used_out = parse_memory(sp.check_output(CMD.split()))
|
127
144
|
|
128
145
|
if device < 0 or device >= len(free_out):
|
129
146
|
raise AttributeError(
|
130
147
|
f'GPU {device} not available (found {len(free_out)} GPUs)')
|
131
148
|
|
132
|
-
free_mem =
|
133
|
-
used_mem =
|
134
|
-
|
149
|
+
free_mem = get_gpu_memory(free_out[device], digits)
|
150
|
+
used_mem = get_gpu_memory(used_out[device], digits)
|
135
151
|
return free_mem, used_mem
|
136
152
|
|
137
153
|
|
torch_geometric/utils/smiles.py
CHANGED
File without changes
|
{pyg_nightly-2.7.0.dev20250802.dist-info → pyg_nightly-2.7.0.dev20250807.dist-info}/licenses/LICENSE
RENAMED
File without changes
|