pyg-nightly 2.7.0.dev20250711__py3-none-any.whl → 2.7.0.dev20250713__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250711
3
+ Version: 2.7.0.dev20250713
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=NE6Fc3xown9lpTtgn1teq5bvwDdXNjPDbqwPsMp41wI,2250
1
+ torch_geometric/__init__.py,sha256=wobkgAtkT1v1hcj7sCzCZBYSBRjGYfs8YUNuN9sFrqc,2250
2
2
  torch_geometric/_compile.py,sha256=9yqMTBKatZPr40WavJz9FjNi7pQj8YZAZOyZmmRGXgc,1351
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -463,7 +463,7 @@ torch_geometric/nn/models/neural_fingerprint.py,sha256=pTLJgU9Uh2Lnf9bggLj4cKI8Y
463
463
  torch_geometric/nn/models/node2vec.py,sha256=81Ku4Rp4IwLEAy06KEgJ2fYtXXVL_uv_Hb8lBr6YXrE,7664
464
464
  torch_geometric/nn/models/pmlp.py,sha256=dcAASVSyQMMhItSfEJWPeAFh0R3tNCwAHwdrShwQ8o4,3538
465
465
  torch_geometric/nn/models/polynormer.py,sha256=mayWdzdolT5PCt_Oo7UGG-JUripMHWB2lUWF1bh6goU,7640
466
- torch_geometric/nn/models/protein_mpnn.py,sha256=QXHfltiJPmakpzgJKw_1vwCGBlszv9nfY4r4F38Sg9k,11031
466
+ torch_geometric/nn/models/protein_mpnn.py,sha256=SwTgafSbI2KJ-yqzn0trZtVWLmfo0_kPEaWSNJUCt70,12266
467
467
  torch_geometric/nn/models/re_net.py,sha256=pz66q5b5BoGDNVQvpEGS2RGoeKvpjkYAv9r3WAuvITk,8986
468
468
  torch_geometric/nn/models/rect.py,sha256=2F3XyyvHTAEuqfJpiNB5M8pSGy738LhPiom5I-SDWqM,2808
469
469
  torch_geometric/nn/models/rev_gnn.py,sha256=Bpme087Zs227lcB0ODOKWsxaly67q96wseaRt6bacjs,11796
@@ -645,7 +645,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
645
645
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
646
646
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
647
647
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
648
- pyg_nightly-2.7.0.dev20250711.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
649
- pyg_nightly-2.7.0.dev20250711.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
650
- pyg_nightly-2.7.0.dev20250711.dist-info/METADATA,sha256=PqSq5SaAYK_6lW8wQgaKH0XuSMEmNMrtH80Dlb0O9QU,63005
651
- pyg_nightly-2.7.0.dev20250711.dist-info/RECORD,,
648
+ pyg_nightly-2.7.0.dev20250713.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
649
+ pyg_nightly-2.7.0.dev20250713.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
650
+ pyg_nightly-2.7.0.dev20250713.dist-info/METADATA,sha256=PRGvP632ImhKInA99VUthA2YsjaJIPcPBFnrfzYYdZE,63005
651
+ pyg_nightly-2.7.0.dev20250713.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250711'
34
+ __version__ = '2.7.0.dev20250713'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -156,6 +156,35 @@ class Decoder(MessagePassing):
156
156
 
157
157
 
158
158
  class ProteinMPNN(torch.nn.Module):
159
+ r"""The ProteinMPNN model from the `"Robust deep learning--based
160
+ protein sequence design using ProteinMPNN"
161
+ <https://www.biorxiv.org/content/10.1101/2022.06.03.494563v1>`_ paper.
162
+
163
+ Args:
164
+ hidden_dim (int): Hidden channels.
165
+ (default: :obj:`128`)
166
+ num_encoder_layers (int): Number of encode layers.
167
+ (default: :obj:`3`)
168
+ num_decoder_layers (int): Number of decode layers.
169
+ (default: :obj:`3`)
170
+ num_neighbors (int): Number of neighbors for each atom.
171
+ (default: :obj:`30`)
172
+ num_rbf (int): Number of radial basis functions.
173
+ (default: :obj:`16`)
174
+ dropout (float): Dropout rate.
175
+ (default: :obj:`0.1`)
176
+ augment_eps (float): Augmentation epsilon for input coordinates.
177
+ (default: :obj:`0.2`)
178
+ num_positional_embedding (int): Number of positional embeddings.
179
+ (default: :obj:`16`)
180
+ vocab_size (int): Number of vocabulary.
181
+ (default: :obj:`21`)
182
+
183
+ .. note::
184
+ For an example of using :class:`ProteinMPNN`, see
185
+ `examples/llm/protein_mpnn.py <https://github.com/pyg-team/
186
+ pytorch_geometric/blob/master/examples/llm/protein_mpnn.py>`_.
187
+ """
159
188
  def __init__(
160
189
  self,
161
190
  hidden_dim: int = 128,