pyg-nightly 2.7.0.dev20250605__py3-none-any.whl → 2.7.0.dev20250606__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250605
3
+ Version: 2.7.0.dev20250606
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=OrO8JODc5kI0Tod_FwHplTEl8A62B4QrOlyKbzqkUCQ,2255
1
+ torch_geometric/__init__.py,sha256=BD3Th7gs3RFBES0GFQ42zZ7rQwA2D8n5zYL1L0hvKFs,2255
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -442,7 +442,7 @@ torch_geometric/nn/models/dimenet.py,sha256=O2rqEx5HWs_lMwRD8eq6WMkbqJaCLL5zgWUJ
442
442
  torch_geometric/nn/models/dimenet_utils.py,sha256=Eyn_EiJqwKvuYj6BtRpSxrzMG3v4Gk98X9MxZ7uvwm4,5069
443
443
  torch_geometric/nn/models/g_retriever.py,sha256=tVibbqM_r-1LnA3R3oVyzp0bpuN3qPoYqcU6LZ8dYEk,8260
444
444
  torch_geometric/nn/models/git_mol.py,sha256=Wc6Hx6RDDR7sDWRWHfA5eK9e9gFsrTZ9OLmpMfoj3pE,12676
445
- torch_geometric/nn/models/glem.py,sha256=sT0XM4klVlci9wduvUoXupATUw9p25uXtaJBrmv3yvs,16431
445
+ torch_geometric/nn/models/glem.py,sha256=1Tl9lb5i8-GwtYMiqFtRmgAC7esSr606ekd2RXXBX2Y,16449
446
446
  torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
447
447
  torch_geometric/nn/models/gpse.py,sha256=3tKzVPkvntAtj13qSPJO1rittr8X1Q_7OqVTOaSpp2s,41982
448
448
  torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
@@ -640,7 +640,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
640
640
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
641
641
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
642
642
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
643
- pyg_nightly-2.7.0.dev20250605.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
644
- pyg_nightly-2.7.0.dev20250605.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
645
- pyg_nightly-2.7.0.dev20250605.dist-info/METADATA,sha256=zp4F4cmkSAYx-OHypi7DhI-CRfTLDhTiAZPltLJbKr0,62967
646
- pyg_nightly-2.7.0.dev20250605.dist-info/RECORD,,
643
+ pyg_nightly-2.7.0.dev20250606.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
644
+ pyg_nightly-2.7.0.dev20250606.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
645
+ pyg_nightly-2.7.0.dev20250606.dist-info/METADATA,sha256=DZmmGP4X5ZCOarKh3B4kkaqENUf31OB0kSOV_zeizTI,62967
646
+ pyg_nightly-2.7.0.dev20250606.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250605'
34
+ __version__ = '2.7.0.dev20250606'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -197,7 +197,7 @@ class GLEM(torch.nn.Module):
197
197
  optimizer.zero_grad()
198
198
  all_out.append(out)
199
199
  total_correct += int(out.argmax(dim=-1).eq(labels).sum())
200
- total_loss += float(loss)
200
+ total_loss += float(loss.detach())
201
201
  if verbose:
202
202
  pbar.update(batch['n_id'].size(0))
203
203
 
@@ -251,7 +251,7 @@ class GLEM(torch.nn.Module):
251
251
  loss.backward()
252
252
  optimizer.step()
253
253
  optimizer.zero_grad()
254
- total_loss += float(loss)
254
+ total_loss += float(loss.detach())
255
255
  total_correct += int(out.argmax(dim=-1).eq(labels).sum())
256
256
  if verbose:
257
257
  pbar.update(batch.batch_size)