pyg-nightly 2.7.0.dev20250530__py3-none-any.whl → 2.7.0.dev20250531__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250530
3
+ Version: 2.7.0.dev20250531
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -444,39 +444,39 @@ We recommend to start with a minimal installation, and install additional depend
444
444
 
445
445
  For ease of installation of these extensions, we provide `pip` wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
446
446
 
447
- #### PyTorch 2.6
447
+ #### PyTorch 2.7
448
448
 
449
- To install the binaries for PyTorch 2.6.0, simply run
449
+ To install the binaries for PyTorch 2.7.0, simply run
450
450
 
451
451
  ```
452
- pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.6.0+${CUDA}.html
452
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.7.0+${CUDA}.html
453
453
  ```
454
454
 
455
- where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu124`, or `cu126` depending on your PyTorch installation.
455
+ where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu126`, or `cu128` depending on your PyTorch installation.
456
456
 
457
- | | `cpu` | `cu118` | `cu124` | `cu126` |
457
+ | | `cpu` | `cu118` | `cu126` | `cu128` |
458
458
  | ----------- | ----- | ------- | ------- | ------- |
459
459
  | **Linux** | ✅ | ✅ | ✅ | ✅ |
460
460
  | **Windows** | ✅ | ✅ | ✅ | ✅ |
461
461
  | **macOS** | ✅ | | | |
462
462
 
463
- #### PyTorch 2.5
463
+ #### PyTorch 2.6
464
464
 
465
- To install the binaries for PyTorch 2.5.0/2.5.1, simply run
465
+ To install the binaries for PyTorch 2.6.0, simply run
466
466
 
467
467
  ```
468
- pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.5.0+${CUDA}.html
468
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.6.0+${CUDA}.html
469
469
  ```
470
470
 
471
- where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
471
+ where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu124`, or `cu126` depending on your PyTorch installation.
472
472
 
473
- | | `cpu` | `cu118` | `cu121` | `cu124` |
473
+ | | `cpu` | `cu118` | `cu124` | `cu126` |
474
474
  | ----------- | ----- | ------- | ------- | ------- |
475
475
  | **Linux** | ✅ | ✅ | ✅ | ✅ |
476
476
  | **Windows** | ✅ | ✅ | ✅ | ✅ |
477
477
  | **macOS** | ✅ | | | |
478
478
 
479
- **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, PyTorch 2.0.0/2.0.1, PyTorch 2.1.0/2.1.1/2.1.2, PyTorch 2.2.0/2.2.1/2.2.2, PyTorch 2.3.0/2.3.1, and PyTorch 2.4.0/2.4.1 (following the same procedure).
479
+ **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, PyTorch 2.0.0/2.0.1, PyTorch 2.1.0/2.1.1/2.1.2, PyTorch 2.2.0/2.2.1/2.2.2, PyTorch 2.3.0/2.3.1, PyTorch 2.4.0/2.4.1, and PyTorch 2.5.0/2.5.1 (following the same procedure).
480
480
  **For older versions, you might need to explicitly specify the latest supported version number** or install via `pip install --no-index` in order to prevent a manual installation from source.
481
481
  You can look up the latest supported version number [here](https://data.pyg.org/whl).
482
482
 
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=t19zh1v4oBZ39p0wQeCPcE01o0D8x5_bFLx1BAIcBoY,2255
1
+ torch_geometric/__init__.py,sha256=ATk4zdv-Np1gZlQB0z4Jxuj5My8yOgPOpXNFtYECdP8,2255
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -7,11 +7,11 @@ torch_geometric/config_store.py,sha256=zdMzlgBpUmBkPovpYQh5fMNwTZLDq2OneqX47QEx7
7
7
  torch_geometric/debug.py,sha256=cLyH9OaL2v7POyW-80b19w-ctA7a_5EZsS4aUF1wc2U,1295
8
8
  torch_geometric/deprecation.py,sha256=dWRymDIUkUVI2MeEmBG5WF4R6jObZeseSBV9G6FNfjc,858
9
9
  torch_geometric/device.py,sha256=tU5-_lBNVbVHl_kUmWPwiG5mQ1pyapwMF4JkmtNN3MM,1224
10
- torch_geometric/edge_index.py,sha256=jSWrZ77qKKydVDxiXrsBlaoL6Qdems6-HiA_B_qDo2o,70078
10
+ torch_geometric/edge_index.py,sha256=RbIwLhtoLXmkQ_DqThBCwi1JH7zNRTsuVj0X-sTYlWE,70094
11
11
  torch_geometric/experimental.py,sha256=JbtNNEXjFGI8hZ9raM6-qrZURP6Z5nlDK8QicZUIbz0,4756
12
- torch_geometric/hash_tensor.py,sha256=WB-aBCJWNWqnlnzQ8Ob4LHeCXm0u1_NPPhmNAEwBpq4,24906
12
+ torch_geometric/hash_tensor.py,sha256=YtIGQ29nnR1nXp3NGnm4zR7VpqXteqzyVt36IFtZsHc,24922
13
13
  torch_geometric/home.py,sha256=EV54B4Dmiv61GDbkCwtCfWGWJ4eFGwZ8s3KOgGjwYgY,790
14
- torch_geometric/index.py,sha256=ZVt69f_EhDqiFccZgKJ2eGUXMxErQ2u_KbJfXT9lIxI,24328
14
+ torch_geometric/index.py,sha256=FSP-Tkfw6d7P5U8ua8BO2IoEPJSnJT0L2IKyAfIqJR0,24360
15
15
  torch_geometric/inspector.py,sha256=nKi5o4Mn6xsG0Ex1GudTEQt_EqnF9mcMqGtp7Shh9sQ,19336
16
16
  torch_geometric/isinstance.py,sha256=truZjdU9PxSvjJ6k0d_CLJ2iOpen2o8U-54pbUbNRyE,935
17
17
  torch_geometric/lazy_loader.py,sha256=SM0UcXtIdiFge75MKBAWXedoiSOdFDOV0rm1PfoF9cE,908
@@ -19,7 +19,7 @@ torch_geometric/logging.py,sha256=HmHHLiCcM64k-6UYNOSfXPIeSGNAyiGGcn8cD8tlyuQ,85
19
19
  torch_geometric/resolver.py,sha256=fn-_6mCpI2xv7eDZnIFcYrHOn0IrwbkWFLDb9laQrWI,1270
20
20
  torch_geometric/seed.py,sha256=MJLbVwpb9i8mK3oi32sS__Cq-dRq_afTeoOL_HoA9ko,372
21
21
  torch_geometric/template.py,sha256=rqjDWgcSAgTCiV4bkOjWRPaO4PpUdC_RXigzxxBqAu8,1060
22
- torch_geometric/typing.py,sha256=Ryx6oGoOsEh8rJ3O0O6j8O18ZPHkrIv-7dr-suQZa6Q,15486
22
+ torch_geometric/typing.py,sha256=QspEdob3sBcx9qenTAO7J7KWDTu6ufQ4XYf_eqZ8k8I,15638
23
23
  torch_geometric/warnings.py,sha256=SB9dWGovX_KKcxqsOrdTDvSb_j0NoB5vPGnK2vg0jVw,727
24
24
  torch_geometric/contrib/__init__.py,sha256=0pWkmXfZtbdr-AKwlii5LTFggTEH-MCrSKpZxrtPlVs,352
25
25
  torch_geometric/contrib/datasets/__init__.py,sha256=lrGnWsEiJf5zsBRmshGZZFN_uYR2ezDjbj9n9nCpvtk,23
@@ -99,8 +99,8 @@ torch_geometric/datasets/git_mol_dataset.py,sha256=LsS_dPYUpwhWXMBh17iT7IbjlLOP0
99
99
  torch_geometric/datasets/github.py,sha256=Qhqhkvi6eZ8VF_HqP1rL2iYToZavFNsQh7J1WdeM9dA,2687
100
100
  torch_geometric/datasets/gnn_benchmark_dataset.py,sha256=4P8n7czF-gf1egLYlAcSSvfB0GXIKpAbH5UjsuFld1M,6976
101
101
  torch_geometric/datasets/heterophilous_graph_dataset.py,sha256=yHHtwl4uPrid0vPOxvPV3sIS8HWdswar8FJ0h0OQ9is,4224
102
- torch_geometric/datasets/hgb_dataset.py,sha256=nKVF05OeMHaGt3IFH3xxcfbTSdlwIY2pUoCHUooMPhQ,8810
103
- torch_geometric/datasets/hm.py,sha256=cjOkFkBVD_IN29ttDURxnLJohPEtVavkMhFX_GfJX2A,6763
102
+ torch_geometric/datasets/hgb_dataset.py,sha256=TielMHTK2sk8YW8xAFgmlKoJSyArqVhcL51bVs1VTJc,8812
103
+ torch_geometric/datasets/hm.py,sha256=Tpw7JNZmd_d-E5dc0RajMI1vRE3haR1h0xhOxQpkxis,6779
104
104
  torch_geometric/datasets/hydro_net.py,sha256=7dEH7Vgfwa-BxkpkXdIx3LvmudJhCR17omkpvPm62dg,11417
105
105
  torch_geometric/datasets/icews.py,sha256=Vdlk-PD10AU68xq8X5IOgrK0wgIBFq8A0D6_WtrXiEo,4735
106
106
  torch_geometric/datasets/igmc_dataset.py,sha256=pMiOoXjvqhfsDDNw51WT_IVi6wGJ0cUNwTdpEprPh3E,4611
@@ -139,7 +139,7 @@ torch_geometric/datasets/pcqm4m.py,sha256=7ID_xXXIAyuNzYLI2lBWygZl9wGos-dbaz1b6E
139
139
  torch_geometric/datasets/planetoid.py,sha256=RksfwR_PI7qGVphs-T-4jXDepYwQCweMXElLm096hgg,7201
140
140
  torch_geometric/datasets/polblogs.py,sha256=IYzsvd4R0OojmOOZUoOdCwQYfwcTfth1PNtcBK1yOGc,3045
141
141
  torch_geometric/datasets/ppi.py,sha256=zPtg-omC7WYvr9Tzwkb7zNjpXLODsvxKxKdGEUswp2E,5030
142
- torch_geometric/datasets/qm7.py,sha256=RbDRYPxjYSPukw3lqxMOCQQQRysiW4hRNB_tG2MF0Ag,3325
142
+ torch_geometric/datasets/qm7.py,sha256=bYyK8xlh9kTr5vqueNbLu9EAjIXkQH1KX1VWnjKfOJc,3323
143
143
  torch_geometric/datasets/qm9.py,sha256=XU2HTPbgJJ_6hT--X0J2xkXliCbt7_-hub9nuIUQlug,17213
144
144
  torch_geometric/datasets/rcdd.py,sha256=gvOoM1tw_X5QMyBB4FkMUwNErMXAvImyjz5twktBAh8,5317
145
145
  torch_geometric/datasets/reddit.py,sha256=QUgiKTaj6YTOYbgWgqV8mPYsctOui2ujaM8f8qy81v0,3131
@@ -149,7 +149,7 @@ torch_geometric/datasets/s3dis.py,sha256=_r9vSX8prt4q_N_4xry_Mwqyf1vXIptAiONrt_6
149
149
  torch_geometric/datasets/sbm_dataset.py,sha256=-dORNkinyxGwaPtCVpudnktzMppaChTraqwYd6FA6DM,8816
150
150
  torch_geometric/datasets/shapenet.py,sha256=tn3HiQQAr6lxHrqxfOVaAtl40guwFYTXWCbSoLfbB8M,8496
151
151
  torch_geometric/datasets/shrec2016.py,sha256=cTLhctbqE0EUEvKddJFhPzDb1oLKXOth4O_WzsWtyMk,6323
152
- torch_geometric/datasets/snap_dataset.py,sha256=r3sC-dHDouyaYoHGdoBY0uO0qOOvD6_Hb96d2ceGMZk,9433
152
+ torch_geometric/datasets/snap_dataset.py,sha256=deJvB6cpIQ3bu_pcWoqgEo1-Kl_NcFi7ZSUci645X0U,9481
153
153
  torch_geometric/datasets/suite_sparse.py,sha256=eqjH4vAUq872qdk3YdLkZSwlu6r7HHpTgK0vEVGmY1s,3278
154
154
  torch_geometric/datasets/tag_dataset.py,sha256=MbnVCJcryNys1cjdMzXbuk-Rn-BjLbHWFGHx4QYhhUg,14760
155
155
  torch_geometric/datasets/taobao.py,sha256=CUcZpbWsNTasevflO8zqP0YvENy89P7wpKS4MHaDJ6Q,4170
@@ -527,7 +527,7 @@ torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3V
527
527
  torch_geometric/transforms/__init__.py,sha256=P0R2CFg9pXxjTX4NnYfNPrifRPAw5lVXEOxO80q-1Ek,4296
528
528
  torch_geometric/transforms/add_gpse.py,sha256=ex7cSLmcSIn-dC5gbic-CLwKegV5Is7Y8mUn-mSOWXg,1555
529
529
  torch_geometric/transforms/add_metapaths.py,sha256=GabaPRvUnpFrZJsxLMUBY2Egzx94GTgsMxegL_qTtbk,14239
530
- torch_geometric/transforms/add_positional_encoding.py,sha256=tuilyubAn3yeyz8mvFc5zxXTlNzh8okKzG9AE2lPG1Q,6049
530
+ torch_geometric/transforms/add_positional_encoding.py,sha256=J5dmdrpZ7Qc2n2rcvsAz084uhMGPTtD1xGl973vdiHY,6033
531
531
  torch_geometric/transforms/add_remaining_self_loops.py,sha256=ItU5FAcE-mkbp_wqTLkRhv0RShR5JVr8vr9d5xv3_Ak,2085
532
532
  torch_geometric/transforms/add_self_loops.py,sha256=No8-tMqERQdWVHwEOaYr9aeg1A_RLisiidEy-1wzoV8,2024
533
533
  torch_geometric/transforms/base_transform.py,sha256=5y4X5JmpKrJsj9XQ8v_CYPcDB83pq7b1g5RLjeBrxWg,1298
@@ -609,7 +609,7 @@ torch_geometric/utils/_to_dense_adj.py,sha256=hl1sboUBvED5Er66bqLms4VdmxKA-7Y3oz
609
609
  torch_geometric/utils/_to_dense_batch.py,sha256=-K5NjjfvjKYKJQ3kXgNIDR7lwMJ_GGISI45b50IGMvY,4582
610
610
  torch_geometric/utils/_train_test_split_edges.py,sha256=KnBDgnaKuJYTHUOIlvFtzvkHUe-93DG3ckST4-wOERM,3569
611
611
  torch_geometric/utils/_tree_decomposition.py,sha256=ZtpjPQJgXbQWtSWjo-Fmhrov0DGO69TfQb9oBFvZ6dM,5304
612
- torch_geometric/utils/_trim_to_layer.py,sha256=JRZjpIMh6Z4g3k3yo9zdpS8YXMZHFB2q3iK4_Lp1O0c,8307
612
+ torch_geometric/utils/_trim_to_layer.py,sha256=cauOEzMJJK4w9BC-Pg1bHVncBYqG9XxQex3rn10BFjc,8339
613
613
  torch_geometric/utils/_unbatch.py,sha256=B0vjKI96PtHvSBG8F_lqvsiJE134aVjUurPZsG6UZRI,2378
614
614
  torch_geometric/utils/augmentation.py,sha256=1F0YCuaklZ9ZbXxdFV0oOoemWvLd8p60WvFo2chzl7E,8600
615
615
  torch_geometric/utils/convert.py,sha256=0KEJoBOzU-w-mMQu9QYaMhUqcrGBxBmeRl0hv8NPvII,21697
@@ -638,7 +638,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
638
638
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
639
639
  torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
640
640
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
641
- pyg_nightly-2.7.0.dev20250530.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
642
- pyg_nightly-2.7.0.dev20250530.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
643
- pyg_nightly-2.7.0.dev20250530.dist-info/METADATA,sha256=VSryXBgX_QXulsojYmppUE0PozqRG89FJ6dx6e7Qkh0,62952
644
- pyg_nightly-2.7.0.dev20250530.dist-info/RECORD,,
641
+ pyg_nightly-2.7.0.dev20250531.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
642
+ pyg_nightly-2.7.0.dev20250531.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
643
+ pyg_nightly-2.7.0.dev20250531.dist-info/METADATA,sha256=64gHJ8lq6nkXhv-ggwHjW8aPjmjEMCU3n2MrZQeJYFo,62967
644
+ pyg_nightly-2.7.0.dev20250531.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250530'
34
+ __version__ = '2.7.0.dev20250531'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -123,8 +123,8 @@ class HGBDataset(InMemoryDataset):
123
123
  start = info.index('LINK\tSTART\tEND\tMEANING') + 1
124
124
  end = info[start:].index('')
125
125
  for key, row in enumerate(info[start:start + end]):
126
- row = row.split('\t')[1:]
127
- src, dst, rel = (v for v in row if v != '')
126
+ edge = row.split('\t')[1:]
127
+ src, dst, rel = (v for v in edge if v != '')
128
128
  src, dst = n_types[int(src)], n_types[int(dst)]
129
129
  rel = rel.split('-')[1]
130
130
  e_types[key] = (src, rel, dst)
@@ -81,7 +81,7 @@ class HM(InMemoryDataset):
81
81
  xs.append(torch.from_numpy(x).to(torch.float))
82
82
 
83
83
  x = torch.from_numpy(df['age'].values).to(torch.float).view(-1, 1)
84
- x = x.nan_to_num(nan=x.nanmean())
84
+ x = x.nan_to_num(nan=x.nanmean()) # type: ignore
85
85
  xs.append(x / x.max())
86
86
 
87
87
  data['customer'].x = torch.cat(xs, dim=-1)
@@ -84,7 +84,7 @@ class QM7b(InMemoryDataset):
84
84
  edge_attr = coulomb_matrix[i, edge_index[0], edge_index[1]]
85
85
  y = target[i].view(1, -1)
86
86
  data = Data(edge_index=edge_index, edge_attr=edge_attr, y=y)
87
- data.num_nodes = edge_index.max().item() + 1
87
+ data.num_nodes = int(edge_index.max()) + 1
88
88
  data_list.append(data)
89
89
 
90
90
  if self.pre_filter is not None:
@@ -109,7 +109,7 @@ def read_ego(files: List[str], name: str) -> List[EgoData]:
109
109
  row = torch.cat([row, row_ego, col_ego], dim=0)
110
110
  col = torch.cat([col, col_ego, row_ego], dim=0)
111
111
  edge_index = torch.stack([row, col], dim=0)
112
- edge_index = coalesce(edge_index, num_nodes=N)
112
+ edge_index = coalesce(edge_index, num_nodes=int(N))
113
113
 
114
114
  data = EgoData(x=x, edge_index=edge_index, circle=circle,
115
115
  circle_batch=circle_batch)
@@ -129,7 +129,7 @@ def read_soc(files: List[str], name: str) -> List[Data]:
129
129
  edge_index = pd.read_csv(files[0], sep='\t', header=None,
130
130
  skiprows=skiprows, dtype=np.int64)
131
131
  edge_index = torch.from_numpy(edge_index.values).t()
132
- num_nodes = edge_index.max().item() + 1
132
+ num_nodes = int(edge_index.max()) + 1
133
133
  edge_index = coalesce(edge_index, num_nodes=num_nodes)
134
134
 
135
135
  return [Data(edge_index=edge_index, num_nodes=num_nodes)]
@@ -143,11 +143,15 @@ def read_wiki(files: List[str], name: str) -> List[Data]:
143
143
  edge_index = torch.from_numpy(edge_index.values).t()
144
144
 
145
145
  idx = torch.unique(edge_index.flatten())
146
- idx_assoc = torch.full((edge_index.max() + 1, ), -1, dtype=torch.long)
146
+ idx_assoc = torch.full(
147
+ (edge_index.max() + 1, ), # type: ignore
148
+ -1,
149
+ dtype=torch.long,
150
+ )
147
151
  idx_assoc[idx] = torch.arange(idx.size(0))
148
152
 
149
153
  edge_index = idx_assoc[edge_index]
150
- num_nodes = edge_index.max().item() + 1
154
+ num_nodes = int(edge_index.max()) + 1
151
155
  edge_index = coalesce(edge_index, num_nodes=num_nodes)
152
156
 
153
157
  return [Data(edge_index=edge_index, num_nodes=num_nodes)]
@@ -803,7 +803,7 @@ class EdgeIndex(Tensor):
803
803
 
804
804
  size = self.get_sparse_size()
805
805
  if value is not None and value.dim() > 1:
806
- size = size + value.size()[1:] # type: ignore
806
+ size = size + value.size()[1:]
807
807
 
808
808
  out = torch.full(size, fill_value, dtype=dtype, device=self.device)
809
809
  out[self._data[0], self._data[1]] = value if value is not None else 1
@@ -1186,10 +1186,10 @@ class EdgeIndex(Tensor):
1186
1186
  return edge_index
1187
1187
 
1188
1188
  # Prevent auto-wrapping outputs back into the proper subclass type:
1189
- __torch_function__ = torch._C._disabled_torch_function_impl
1189
+ __torch_function__ = torch._C._disabled_torch_function_impl # type: ignore
1190
1190
 
1191
1191
  @classmethod
1192
- def __torch_dispatch__(
1192
+ def __torch_dispatch__( # type: ignore
1193
1193
  cls: Type,
1194
1194
  func: Callable[..., Any],
1195
1195
  types: Iterable[Type[Any]],
@@ -326,10 +326,10 @@ class HashTensor(Tensor):
326
326
  # PyTorch/Python builtins #################################################
327
327
 
328
328
  # Prevent auto-wrapping outputs back into the proper subclass type:
329
- __torch_function__ = torch._C._disabled_torch_function_impl
329
+ __torch_function__ = torch._C._disabled_torch_function_impl # type: ignore
330
330
 
331
331
  @classmethod
332
- def __torch_dispatch__(
332
+ def __torch_dispatch__( # type: ignore
333
333
  cls: Type,
334
334
  func: Callable[..., Any],
335
335
  types: Iterable[Type[Any]],
@@ -416,7 +416,7 @@ class HashTensor(Tensor):
416
416
  """""" # noqa: D419
417
417
  return self._min_key.is_shared()
418
418
 
419
- def detach_(self) -> 'HashTensor': # type: ignore
419
+ def detach_(self) -> 'HashTensor':
420
420
  """""" # noqa: D419
421
421
  if self._value is not None:
422
422
  self._value.detach_()
torch_geometric/index.py CHANGED
@@ -361,10 +361,10 @@ class Index(Tensor):
361
361
  return index
362
362
 
363
363
  # Prevent auto-wrapping outputs back into the proper subclass type:
364
- __torch_function__ = torch._C._disabled_torch_function_impl
364
+ __torch_function__ = torch._C._disabled_torch_function_impl # type: ignore
365
365
 
366
366
  @classmethod
367
- def __torch_dispatch__(
367
+ def __torch_dispatch__( # type: ignore
368
368
  cls: Type,
369
369
  func: Callable[..., Any],
370
370
  types: Iterable[Type[Any]],
@@ -97,7 +97,7 @@ class AddLaplacianEigenvectorPE(BaseTransform):
97
97
  from scipy.sparse.linalg import eigs, eigsh
98
98
  eig_fn = eigs if not self.is_undirected else eigsh
99
99
 
100
- eig_vals, eig_vecs = eig_fn( # type: ignore
100
+ eig_vals, eig_vecs = eig_fn(
101
101
  L,
102
102
  k=self.k + 1,
103
103
  which='SR' if not self.is_undirected else 'SA',
torch_geometric/typing.py CHANGED
@@ -10,7 +10,7 @@ import torch
10
10
  from torch import Tensor
11
11
 
12
12
  try:
13
- from typing import TypeAlias # type: ignore
13
+ from typing import TypeAlias
14
14
  except ImportError:
15
15
  from typing_extensions import TypeAlias
16
16
 
@@ -21,6 +21,8 @@ WITH_PT23 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 3
21
21
  WITH_PT24 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 4
22
22
  WITH_PT25 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 5
23
23
  WITH_PT26 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 6
24
+ WITH_PT27 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 7
25
+ WITH_PT28 = WITH_PT20 and int(torch.__version__.split('.')[1]) >= 8
24
26
  WITH_PT113 = WITH_PT20 or int(torch.__version__.split('.')[1]) >= 13
25
27
 
26
28
  WITH_WINDOWS = os.name == 'nt'
@@ -95,7 +97,7 @@ except Exception as e:
95
97
  WITH_CUDA_HASH_MAP = False
96
98
 
97
99
  if WITH_CPU_HASH_MAP:
98
- CPUHashMap: TypeAlias = torch.classes.pyg.CPUHashMap
100
+ CPUHashMap: TypeAlias = torch.classes.pyg.CPUHashMap # type: ignore
99
101
  else:
100
102
 
101
103
  class CPUHashMap: # type: ignore
@@ -107,7 +109,7 @@ else:
107
109
 
108
110
 
109
111
  if WITH_CUDA_HASH_MAP:
110
- CUDAHashMap: TypeAlias = torch.classes.pyg.CUDAHashMap
112
+ CUDAHashMap: TypeAlias = torch.classes.pyg.CUDAHashMap # type: ignore
111
113
  else:
112
114
 
113
115
  class CUDAHashMap: # type: ignore
@@ -234,10 +234,10 @@ def trim_sparse_tensor(src: SparseTensor, size: Tuple[int, int],
234
234
  rowptr = torch.narrow(rowptr, 0, 0, size[0] + 1).clone()
235
235
  rowptr[num_seed_nodes + 1:] = rowptr[num_seed_nodes]
236
236
 
237
- col = torch.narrow(col, 0, 0, rowptr[-1])
237
+ col = torch.narrow(col, 0, 0, rowptr[-1]) # type: ignore
238
238
 
239
239
  if value is not None:
240
- value = torch.narrow(value, 0, 0, rowptr[-1])
240
+ value = torch.narrow(value, 0, 0, rowptr[-1]) # type: ignore
241
241
 
242
242
  csr2csc = src.storage._csr2csc
243
243
  if csr2csc is not None: