pyg-nightly 2.7.0.dev20250517__py3-none-any.whl → 2.7.0.dev20250519__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250517
3
+ Version: 2.7.0.dev20250519
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=N7kyRiEnHNJ2c80MLMp87Ga4m_iLzlueBNRIE8g09G0,2255
1
+ torch_geometric/__init__.py,sha256=3MHwFxhxZiB-kZdMgs8c_3YJbedWx_rRNAEJe2DVcM4,2255
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -635,9 +635,9 @@ torch_geometric/utils/smiles.py,sha256=lGQ2BwJ49uBrQfIxxPz8ceTO9Jo-XCjlLxs1ql3xr
635
635
  torch_geometric/utils/sparse.py,sha256=MJyWkn-r9sdMyR_m-aBUIQUkvxsYLUNP9jYlfntSUpI,25118
636
636
  torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5nUAUjw,6222
637
637
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
638
- torch_geometric/visualization/graph.py,sha256=PoI9tjbEXZVkMUg4CvTLbzqtEfzUwMUcsw57DNBEU0s,14311
638
+ torch_geometric/visualization/graph.py,sha256=mfZHXYfiU-CWMtfawYc80IxVwVmtK9hbIkSKhM_j7oI,14311
639
639
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
640
- pyg_nightly-2.7.0.dev20250517.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
641
- pyg_nightly-2.7.0.dev20250517.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
642
- pyg_nightly-2.7.0.dev20250517.dist-info/METADATA,sha256=j43suE7NzqcYYmdQRUpgMUJQoIcUdA6R3ZvwLMqPyyE,62979
643
- pyg_nightly-2.7.0.dev20250517.dist-info/RECORD,,
640
+ pyg_nightly-2.7.0.dev20250519.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
641
+ pyg_nightly-2.7.0.dev20250519.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
642
+ pyg_nightly-2.7.0.dev20250519.dist-info/METADATA,sha256=IPUvzmMhGcvarsGCAU0k2E1051rjjURBJQkX1QpavlQ,62979
643
+ pyg_nightly-2.7.0.dev20250519.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250517'
34
+ __version__ = '2.7.0.dev20250519'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -160,9 +160,9 @@ def visualize_hetero_graph(
160
160
  node_labels_dict: Optional[Dict[str, List[str]]] = None,
161
161
  node_weight_dict: Optional[Dict[str, Tensor]] = None,
162
162
  node_size_range: Tuple[float, float] = (50, 500),
163
- node_opacity_range: Tuple[float, float] = (0.2, 1.0),
163
+ node_opacity_range: Tuple[float, float] = (1.0, 1.0),
164
164
  edge_width_range: Tuple[float, float] = (0.1, 2.0),
165
- edge_opacity_range: Tuple[float, float] = (0.2, 1.0),
165
+ edge_opacity_range: Tuple[float, float] = (1.0, 1.0),
166
166
  ) -> Any:
167
167
  """Visualizes a heterogeneous graph using networkx."""
168
168
  if backend is not None and backend != "networkx":
@@ -231,9 +231,9 @@ def _visualize_hetero_graph_via_networkx(
231
231
  node_labels_dict: Optional[Dict[str, List[str]]] = None,
232
232
  node_weight_dict: Optional[Dict[str, Tensor]] = None,
233
233
  node_size_range: Tuple[float, float] = (50, 500),
234
- node_opacity_range: Tuple[float, float] = (0.2, 1.0),
234
+ node_opacity_range: Tuple[float, float] = (1.0, 1.0),
235
235
  edge_width_range: Tuple[float, float] = (0.1, 2.0),
236
- edge_opacity_range: Tuple[float, float] = (0.2, 1.0),
236
+ edge_opacity_range: Tuple[float, float] = (1.0, 1.0),
237
237
  ) -> Any:
238
238
  import matplotlib.pyplot as plt
239
239
  import networkx as nx