pyg-nightly 2.7.0.dev20250501__py3-none-any.whl → 2.7.0.dev20250502__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250501.dist-info → pyg_nightly-2.7.0.dev20250502.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250501.dist-info → pyg_nightly-2.7.0.dev20250502.dist-info}/RECORD +18 -18
- torch_geometric/__init__.py +1 -1
- torch_geometric/data/batch.py +2 -2
- torch_geometric/data/large_graph_indexer.py +4 -4
- torch_geometric/distributed/dist_loader.py +2 -2
- torch_geometric/explain/algorithm/base.py +2 -2
- torch_geometric/explain/algorithm/graphmask_explainer.py +1 -1
- torch_geometric/explain/explainer.py +1 -1
- torch_geometric/explain/explanation.py +1 -1
- torch_geometric/loader/mixin.py +4 -4
- torch_geometric/nn/aggr/base.py +1 -1
- torch_geometric/nn/conv/message_passing.py +2 -2
- torch_geometric/sampler/base.py +1 -1
- torch_geometric/typing.py +2 -2
- torch_geometric/utils/map.py +5 -4
- {pyg_nightly-2.7.0.dev20250501.dist-info → pyg_nightly-2.7.0.dev20250502.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250501.dist-info → pyg_nightly-2.7.0.dev20250502.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250501.dist-info → pyg_nightly-2.7.0.dev20250502.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250502
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=3s3xapTQEzq9U-HSeJw1y27iIauP4Q6mXl6ynWcHsD0,1978
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -19,7 +19,7 @@ torch_geometric/logging.py,sha256=HmHHLiCcM64k-6UYNOSfXPIeSGNAyiGGcn8cD8tlyuQ,85
|
|
19
19
|
torch_geometric/resolver.py,sha256=fn-_6mCpI2xv7eDZnIFcYrHOn0IrwbkWFLDb9laQrWI,1270
|
20
20
|
torch_geometric/seed.py,sha256=MJLbVwpb9i8mK3oi32sS__Cq-dRq_afTeoOL_HoA9ko,372
|
21
21
|
torch_geometric/template.py,sha256=rqjDWgcSAgTCiV4bkOjWRPaO4PpUdC_RXigzxxBqAu8,1060
|
22
|
-
torch_geometric/typing.py,sha256=
|
22
|
+
torch_geometric/typing.py,sha256=bUIcBMcvDGn3DV1p6VFvkQ64fCB3mO2SNrlFxCoKCkc,15624
|
23
23
|
torch_geometric/warnings.py,sha256=t114CbkrmiqkXaavx5g7OO52dLdktf-U__B5QqYIQvI,413
|
24
24
|
torch_geometric/contrib/__init__.py,sha256=0pWkmXfZtbdr-AKwlii5LTFggTEH-MCrSKpZxrtPlVs,352
|
25
25
|
torch_geometric/contrib/datasets/__init__.py,sha256=lrGnWsEiJf5zsBRmshGZZFN_uYR2ezDjbj9n9nCpvtk,23
|
@@ -31,7 +31,7 @@ torch_geometric/contrib/nn/models/__init__.py,sha256=3ia5cX-TPhouLl6jn_HA-Rd2Laa
|
|
31
31
|
torch_geometric/contrib/nn/models/rbcd_attack.py,sha256=qcyxBxAbx8LKzpp3RoJQ0cxl9aB2onsWT4oY1fsM7us,33280
|
32
32
|
torch_geometric/contrib/transforms/__init__.py,sha256=lrGnWsEiJf5zsBRmshGZZFN_uYR2ezDjbj9n9nCpvtk,23
|
33
33
|
torch_geometric/data/__init__.py,sha256=D6Iz5A9vEb_2rpf96Zn7uM-lchZ3WpW8X7WdAD1yxKw,4565
|
34
|
-
torch_geometric/data/batch.py,sha256=
|
34
|
+
torch_geometric/data/batch.py,sha256=8X8CN4_1rjrh48R3R2--mZUgfsO7Po9JP-H6SbrBiBA,8740
|
35
35
|
torch_geometric/data/collate.py,sha256=RRiUMBLxDAitaHx7zF0qiMR2nW1NY_0uaNdxlUo5-bo,12756
|
36
36
|
torch_geometric/data/data.py,sha256=mp_jsjsaVwUcY-FghlqNZTHUQEKBdi7xWR_oA2ewrD4,43821
|
37
37
|
torch_geometric/data/database.py,sha256=VTct1xyzXsK0GZahBV9-noviCzjRteAsKMG7VgJ52n0,22998
|
@@ -44,7 +44,7 @@ torch_geometric/data/graph_store.py,sha256=EtIgsyY7RdBHRTCn34VypEBOG8cg8WzsNT_kT
|
|
44
44
|
torch_geometric/data/hetero_data.py,sha256=IunNWq2cRDox-imtc7w3yxjLI4KfUGXkmk6wddGGnZ0,48601
|
45
45
|
torch_geometric/data/hypergraph_data.py,sha256=33hsXW25Yz4Ju8mKajYinZOrkqrUi1SqThG7MlOOYNM,8294
|
46
46
|
torch_geometric/data/in_memory_dataset.py,sha256=F35hU9Dw3qiJUL5E1CCAfq-1xrlUMstXBmQVEQdtJ1I,13403
|
47
|
-
torch_geometric/data/large_graph_indexer.py,sha256=
|
47
|
+
torch_geometric/data/large_graph_indexer.py,sha256=jSB3St2jT4GUKvmeyr7Hu1ozGk9AQey32Z0XFnkSf4M,25454
|
48
48
|
torch_geometric/data/makedirs.py,sha256=6uOv4y34i947cm4rv7Aj2_YZBq-EOsyPKnlGA188YSw,463
|
49
49
|
torch_geometric/data/on_disk_dataset.py,sha256=77om-e6kzcpBb77kf7um1xY8-yHmQaao_6R7I-3NwHk,6629
|
50
50
|
torch_geometric/data/remote_backend_utils.py,sha256=Rzpq1PczXuHhUscrFtIAL6dua6pMehSJlXG7yEsrrrg,4503
|
@@ -181,7 +181,7 @@ torch_geometric/datasets/utils/cheatsheet.py,sha256=M55Bj64cjMVqDNoIq1shUVeU2ngo
|
|
181
181
|
torch_geometric/distributed/__init__.py,sha256=NNCGXbDTAW5xoJgSr-PK0VYEnT8UCI7SoZXc16fjuxQ,589
|
182
182
|
torch_geometric/distributed/dist_context.py,sha256=n34e2HU-TxmK6DrOpb5lWZu_xg1To1IFrXH4ueF_Jhg,418
|
183
183
|
torch_geometric/distributed/dist_link_neighbor_loader.py,sha256=wM9heZmStrPSW7eo9qWusKdI_lVkDkLlda8ILBqC2c8,4933
|
184
|
-
torch_geometric/distributed/dist_loader.py,sha256=
|
184
|
+
torch_geometric/distributed/dist_loader.py,sha256=Gjvl5Ck8YrFN6YmCWEFWVqLEwI1hog-rWj2Sk_zqYC0,6504
|
185
185
|
torch_geometric/distributed/dist_neighbor_loader.py,sha256=Zi3obALN_T6vJZI_1pWaRj60u9zEk3W5wo8bEKTbYR8,4372
|
186
186
|
torch_geometric/distributed/dist_neighbor_sampler.py,sha256=YrL-NMFOJwHJpF189o4k6dIugo7J9SANaUVgMc36cmE,42406
|
187
187
|
torch_geometric/distributed/event_loop.py,sha256=wr3iwMYEWOGkBlvC5huD2k5YxisaGE9w1Z-8RcQiIQk,3309
|
@@ -192,16 +192,16 @@ torch_geometric/distributed/rpc.py,sha256=rJqiVR6Vbb2mpyVSC0Y5tPApqP-b1ck1Uq3IQp
|
|
192
192
|
torch_geometric/distributed/utils.py,sha256=FGrr3qw7hx7EQaIjjqasurloCFJ9q_0jt8jdSIUjBeM,6567
|
193
193
|
torch_geometric/explain/__init__.py,sha256=pRxVB33zsxhED1StRWdHboQWh3e06__g9N298Hzi42Y,359
|
194
194
|
torch_geometric/explain/config.py,sha256=_0j67NAwPwjrWHPncNywCT-oKyMiryJNxufxVN1BFlM,7834
|
195
|
-
torch_geometric/explain/explainer.py,sha256=
|
196
|
-
torch_geometric/explain/explanation.py,sha256=
|
195
|
+
torch_geometric/explain/explainer.py,sha256=G7SvraTD25_KZEIP0eQ5QAIuHKodRUF37WOcoAJ921U,10677
|
196
|
+
torch_geometric/explain/explanation.py,sha256=5DWNEWhRLptGbnTnMrcugPBHlizUHFlkBx7iwlYo1k4,18883
|
197
197
|
torch_geometric/explain/algorithm/__init__.py,sha256=fE29xbd0bPxg-EfrB2BDmmY9QnyO-7TgvYduGHofm5o,496
|
198
198
|
torch_geometric/explain/algorithm/attention_explainer.py,sha256=65iGLmOt00ERtBDVxAoydIchykdWZU24aXzSzUGzQEI,11304
|
199
|
-
torch_geometric/explain/algorithm/base.py,sha256=
|
199
|
+
torch_geometric/explain/algorithm/base.py,sha256=lXynh9wMAKWN9tuCkcmsmNPwSUExTtgbNl2Nw39NQD0,6942
|
200
200
|
torch_geometric/explain/algorithm/captum.py,sha256=k6hNgC5Kn9lVirOYVJzej8-hRuf5C2mPFUXFLd2wWsY,12857
|
201
201
|
torch_geometric/explain/algorithm/captum_explainer.py,sha256=oz-c40hvdzii4_chEQPHzQo_dFjHr9HLuJhDLsqRIVU,7346
|
202
202
|
torch_geometric/explain/algorithm/dummy_explainer.py,sha256=jvcVQmfngmUWgoKa5p7CXzju2HM5D5DfieJhZW3gbLc,2872
|
203
203
|
torch_geometric/explain/algorithm/gnn_explainer.py,sha256=iu45fGWdd4c6wNczWEAT-29HCAz7ncuoaS6cpx-xDJM,24660
|
204
|
-
torch_geometric/explain/algorithm/graphmask_explainer.py,sha256=
|
204
|
+
torch_geometric/explain/algorithm/graphmask_explainer.py,sha256=6DisYN-dz2vhr1AlTPBIq6xSmpDdaNu306JKeLObNVI,21377
|
205
205
|
torch_geometric/explain/algorithm/pg_explainer.py,sha256=LMlNcqSqtEP-IzYA7Xix6FoAogcrLUaEUAxDVyz2eyc,20162
|
206
206
|
torch_geometric/explain/algorithm/utils.py,sha256=eh0ARPG41V7piVw5jdMYpV0p7WjTlpehnY-bWqPV_zg,2564
|
207
207
|
torch_geometric/explain/metric/__init__.py,sha256=swLeuWVaM3K7UvowsH7q3BzfTq_W1vhcFY8nEP7vFPQ,301
|
@@ -278,7 +278,7 @@ torch_geometric/loader/ibmb_loader.py,sha256=11sg918nIbybr2hoFEO-HA1wYNkL6GFMK9y
|
|
278
278
|
torch_geometric/loader/imbalanced_sampler.py,sha256=clPERglHRk5SyeFevDrgezYFl7ir975OVFMyJwOV090,3754
|
279
279
|
torch_geometric/loader/link_loader.py,sha256=xX9C6c3K5oWAcjMygeDOdxv1mzkP8ePideehsLaDu-w,16207
|
280
280
|
torch_geometric/loader/link_neighbor_loader.py,sha256=CWv1lO_1Anml8kB60-WG4m_AK1rvqP1jwROV6tHWivo,14383
|
281
|
-
torch_geometric/loader/mixin.py,sha256=
|
281
|
+
torch_geometric/loader/mixin.py,sha256=XX2tIXoFj0dYexUiUhTfVCXAQyL63fpk5bS5FqkXo5U,10946
|
282
282
|
torch_geometric/loader/neighbor_loader.py,sha256=vnLn_RhBKTux5h8pi0vzj0d7JPoOpLA3n3vjyIWv9lo,12452
|
283
283
|
torch_geometric/loader/neighbor_sampler.py,sha256=mraVFXIIGctYot4Xr2VOAhCKAOQyW2gP9KROf7g6tcc,8497
|
284
284
|
torch_geometric/loader/node_loader.py,sha256=g_kV5N0tO6eMSFPc5fdbzfHr4COAeKVJi7FEq52f4zc,11848
|
@@ -312,7 +312,7 @@ torch_geometric/nn/to_hetero_transformer.py,sha256=YS4gFOhnMuDstFTPvR18FDyXNaTxx
|
|
312
312
|
torch_geometric/nn/to_hetero_with_bases_transformer.py,sha256=ErWnsgYYHlQgzwdg0eUlgR6fauWPdnddS7XB5ji3OVk,22974
|
313
313
|
torch_geometric/nn/aggr/__init__.py,sha256=_a01GujVyoRSE6-2driodMhC8-jJss4WNIhairYmhHY,1645
|
314
314
|
torch_geometric/nn/aggr/attention.py,sha256=ZaZQijQGDx7Mfsk-kDlxJSCDjN1Vp02YyblR5-3SmnY,2952
|
315
|
-
torch_geometric/nn/aggr/base.py,sha256=
|
315
|
+
torch_geometric/nn/aggr/base.py,sha256=vcWHJlS51mfdYHWmnWEN8b1D57mPM5Y8nqqdVnFm82M,8225
|
316
316
|
torch_geometric/nn/aggr/basic.py,sha256=5CRXpm0VVZb22fMPbMMdqQgh97RYiKiUgZGq3hr7Gbw,11011
|
317
317
|
torch_geometric/nn/aggr/deep_sets.py,sha256=2LSxJJZaWuxRJew-pubmMYc2ynLYWeTyVK47k6OUhq0,2650
|
318
318
|
torch_geometric/nn/aggr/equilibrium.py,sha256=ACGzBR55DeLAeibvGnLH89jCDANn9ET0vDFdgqtzVEs,6639
|
@@ -372,7 +372,7 @@ torch_geometric/nn/conv/hgt_conv.py,sha256=lUhTWUMovMtn9yR_b2-kLNLqHChGOUl2OtXBY
|
|
372
372
|
torch_geometric/nn/conv/hypergraph_conv.py,sha256=4BosbbqJyprlI6QjPqIfMxCqnARU_0mUn1zcAQhbw90,8691
|
373
373
|
torch_geometric/nn/conv/le_conv.py,sha256=DonmmYZOKk5wIlTZzzIfNKqBY6MO0MRxYhyr0YtNz-Q,3494
|
374
374
|
torch_geometric/nn/conv/lg_conv.py,sha256=8jMa79iPsOUbXEfBIc3wmbvAD8T3d1j37LeIFTX3Yag,2369
|
375
|
-
torch_geometric/nn/conv/message_passing.py,sha256=
|
375
|
+
torch_geometric/nn/conv/message_passing.py,sha256=ynTp5MlvHB4SFYnuetK4wWi_1Bj_FhDGAJbf6ZmhEqY,44360
|
376
376
|
torch_geometric/nn/conv/mf_conv.py,sha256=SkOGMN1tFT9dcqy8xYowsB2ozw6QfkoArgR1BksZZaU,4340
|
377
377
|
torch_geometric/nn/conv/mixhop_conv.py,sha256=qVDPWeWcnO7_eHM0ZnpKtr8SISjb4jp0xjgpoDrwjlk,4555
|
378
378
|
torch_geometric/nn/conv/nn_conv.py,sha256=X215RSARaJcfI0JOC7K8ybZMq7SoiO_JhJdp9pPRnE8,4759
|
@@ -511,7 +511,7 @@ torch_geometric/profile/profile.py,sha256=cHCY4U0XtyqyKC5u380q6TspsOZ5tGHNXaZsKu
|
|
511
511
|
torch_geometric/profile/profiler.py,sha256=rfNciRzWDka_BgO6aPFi3cy8mcT4lSgFWy-WfPgI2SI,16891
|
512
512
|
torch_geometric/profile/utils.py,sha256=7h6vzTzW8vv-ZqMOz2DV8HHNgC9ViOrN7IR9d3BPDZ8,5497
|
513
513
|
torch_geometric/sampler/__init__.py,sha256=0h_xJ7CQnlTxF5hUpc81WPQ0QaBtouG8eKK1RzPGA-s,512
|
514
|
-
torch_geometric/sampler/base.py,sha256=
|
514
|
+
torch_geometric/sampler/base.py,sha256=glbuSNcI0A_y-O3x29jqQpSSqSWxUDKJk5vM8uVF8Gs,26980
|
515
515
|
torch_geometric/sampler/hgt_sampler.py,sha256=UAm8_wwzEcziKDJ8-TnfZh1705dXRsy_I5PKhZSDTK8,2721
|
516
516
|
torch_geometric/sampler/neighbor_sampler.py,sha256=MAVphWqNf0-cwlHRvdiU8de86dBxwjm3Miam_6s1ep4,33971
|
517
517
|
torch_geometric/sampler/utils.py,sha256=RJtasO6Q7Pp3oYEOWrbf2DEYuSfuKZOsF2I7-eJDnoA,5485
|
@@ -620,7 +620,7 @@ torch_geometric/utils/hetero.py,sha256=ok4uAAOyMiaeEPmvyS4DNoDwdKnLS2gmgs5WVVklx
|
|
620
620
|
torch_geometric/utils/isolated.py,sha256=nUxCfMY3q9IIFjelr4eyAJH4sYG9W3lGdpWidnp3dm4,3588
|
621
621
|
torch_geometric/utils/laplacian.py,sha256=ludDil4yS1A27PEuYOjZtCtE3o-t0lnucJKfiqENhvM,3695
|
622
622
|
torch_geometric/utils/loop.py,sha256=MUWUS7a5GxuxLKlCtRq95U1hc3MndybAhqKD5IAe2RY,23051
|
623
|
-
torch_geometric/utils/map.py,sha256=
|
623
|
+
torch_geometric/utils/map.py,sha256=Bioo-NrnH2LBcPsnBJEQjLl0hGnoJkIYgfoLd0ffP5Y,5926
|
624
624
|
torch_geometric/utils/mask.py,sha256=WOsfZLOMf1bunlwI6RH3evptbu0eOwNg19t6VOYboIo,2340
|
625
625
|
torch_geometric/utils/mesh_laplacian.py,sha256=dqUEp7sOCBhWZPnUMAqa93OAj30dTDshcUpstt2iZDc,4387
|
626
626
|
torch_geometric/utils/mixin.py,sha256=h4r5acaeEZ2azvwBcUbybevuoyhLE8qLBiERU7V9w20,699
|
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
636
636
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
637
637
|
torch_geometric/visualization/graph.py,sha256=PoI9tjbEXZVkMUg4CvTLbzqtEfzUwMUcsw57DNBEU0s,14311
|
638
638
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
639
|
-
pyg_nightly-2.7.0.
|
640
|
-
pyg_nightly-2.7.0.
|
641
|
-
pyg_nightly-2.7.0.
|
642
|
-
pyg_nightly-2.7.0.
|
639
|
+
pyg_nightly-2.7.0.dev20250502.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
640
|
+
pyg_nightly-2.7.0.dev20250502.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
641
|
+
pyg_nightly-2.7.0.dev20250502.dist-info/METADATA,sha256=uN89LKXFS5kEbe4cQl4Rt5sBrZdeelM03nMSwqZ03gw,62979
|
642
|
+
pyg_nightly-2.7.0.dev20250502.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250502'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
torch_geometric/data/batch.py
CHANGED
@@ -125,8 +125,8 @@ class Batch(metaclass=DynamicInheritance):
|
|
125
125
|
cls=self.__class__.__bases__[-1],
|
126
126
|
batch=self,
|
127
127
|
idx=idx,
|
128
|
-
slice_dict=
|
129
|
-
inc_dict=
|
128
|
+
slice_dict=self._slice_dict,
|
129
|
+
inc_dict=self._inc_dict,
|
130
130
|
decrement=True,
|
131
131
|
)
|
132
132
|
|
@@ -230,9 +230,9 @@ class LargeGraphIndexer:
|
|
230
230
|
"Only non-mapped features can be retrieved uniquely.")
|
231
231
|
return ordered_set(self.get_node_features(feature_name))
|
232
232
|
|
233
|
-
except KeyError:
|
233
|
+
except KeyError as e:
|
234
234
|
raise AttributeError(
|
235
|
-
f"Nodes do not have a feature called {feature_name}")
|
235
|
+
f"Nodes do not have a feature called {feature_name}") from e
|
236
236
|
|
237
237
|
def add_node_feature(
|
238
238
|
self,
|
@@ -354,9 +354,9 @@ class LargeGraphIndexer:
|
|
354
354
|
raise IndexError(
|
355
355
|
"Only non-mapped features can be retrieved uniquely.")
|
356
356
|
return ordered_set(self.get_edge_features(feature_name))
|
357
|
-
except KeyError:
|
357
|
+
except KeyError as e:
|
358
358
|
raise AttributeError(
|
359
|
-
f"Edges do not have a feature called {feature_name}")
|
359
|
+
f"Edges do not have a feature called {feature_name}") from e
|
360
360
|
|
361
361
|
def add_edge_feature(
|
362
362
|
self,
|
@@ -138,9 +138,9 @@ class DistLoader:
|
|
138
138
|
# close RPC & worker group at exit:
|
139
139
|
atexit.register(shutdown_rpc, self.current_ctx_worker.worker_name)
|
140
140
|
|
141
|
-
except RuntimeError:
|
141
|
+
except RuntimeError as e:
|
142
142
|
raise RuntimeError(f"`{self}.init_fn()` could not initialize the "
|
143
|
-
f"worker loop of the neighbor sampler")
|
143
|
+
f"worker loop of the neighbor sampler") from e
|
144
144
|
|
145
145
|
def __repr__(self) -> str:
|
146
146
|
return f'{self.__class__.__name__}(pid={self.pid})'
|
@@ -166,7 +166,7 @@ class ExplainerAlgorithm(torch.nn.Module):
|
|
166
166
|
elif self.model_config.return_type == ModelReturnType.probs:
|
167
167
|
loss_fn = F.binary_cross_entropy
|
168
168
|
else:
|
169
|
-
|
169
|
+
raise AssertionError()
|
170
170
|
|
171
171
|
return loss_fn(y_hat.view_as(y), y.float())
|
172
172
|
|
@@ -183,7 +183,7 @@ class ExplainerAlgorithm(torch.nn.Module):
|
|
183
183
|
elif self.model_config.return_type == ModelReturnType.log_probs:
|
184
184
|
loss_fn = F.nll_loss
|
185
185
|
else:
|
186
|
-
|
186
|
+
raise AssertionError()
|
187
187
|
|
188
188
|
return loss_fn(y_hat, y)
|
189
189
|
|
@@ -274,7 +274,7 @@ class GraphMaskExplainer(ExplainerAlgorithm):
|
|
274
274
|
elif self.model_config.mode == ModelMode.regression:
|
275
275
|
loss = self._loss_regression(y_hat, y)
|
276
276
|
else:
|
277
|
-
|
277
|
+
raise AssertionError()
|
278
278
|
|
279
279
|
g = torch.relu(loss - self.allowance).mean()
|
280
280
|
f = penalty * self.penalty_scaling
|
@@ -265,7 +265,7 @@ class Explainer:
|
|
265
265
|
return (prediction > 0).long().view(-1)
|
266
266
|
if self.model_config.return_type == ModelReturnType.probs:
|
267
267
|
return (prediction > 0.5).long().view(-1)
|
268
|
-
|
268
|
+
raise AssertionError()
|
269
269
|
|
270
270
|
if self.model_config.mode == ModelMode.multiclass_classification:
|
271
271
|
return prediction.argmax(dim=-1)
|
torch_geometric/loader/mixin.py
CHANGED
@@ -106,9 +106,9 @@ class MultithreadingMixin:
|
|
106
106
|
def _mt_init_fn(self, worker_id: int) -> None:
|
107
107
|
try:
|
108
108
|
torch.set_num_threads(int(self._worker_threads))
|
109
|
-
except IndexError:
|
109
|
+
except IndexError as e:
|
110
110
|
raise ValueError(f"Cannot set {self.worker_threads} threads "
|
111
|
-
f"in worker {worker_id}")
|
111
|
+
f"in worker {worker_id}") from e
|
112
112
|
|
113
113
|
# Chain worker init functions:
|
114
114
|
self._old_worker_init_fn(worker_id)
|
@@ -213,9 +213,9 @@ class AffinityMixin:
|
|
213
213
|
|
214
214
|
psutil.Process().cpu_affinity(worker_cores)
|
215
215
|
|
216
|
-
except IndexError:
|
216
|
+
except IndexError as e:
|
217
217
|
raise ValueError(f"Cannot use CPU affinity for worker ID "
|
218
|
-
f"{worker_id} on CPU {self.loader_cores}")
|
218
|
+
f"{worker_id} on CPU {self.loader_cores}") from e
|
219
219
|
|
220
220
|
# Chain worker init functions:
|
221
221
|
self._old_worker_init_fn(worker_id)
|
torch_geometric/nn/aggr/base.py
CHANGED
@@ -135,7 +135,7 @@ class Aggregation(torch.nn.Module):
|
|
135
135
|
if index.numel() > 0 and dim_size <= int(index.max()):
|
136
136
|
raise ValueError(f"Encountered invalid 'dim_size' (got "
|
137
137
|
f"'{dim_size}' but expected "
|
138
|
-
f">= '{int(index.max()) + 1}')")
|
138
|
+
f">= '{int(index.max()) + 1}')") from e
|
139
139
|
raise e
|
140
140
|
|
141
141
|
def __repr__(self) -> str:
|
@@ -276,7 +276,7 @@ class MessagePassing(torch.nn.Module):
|
|
276
276
|
f"{index.min().item()}). Please ensure that all "
|
277
277
|
f"indices in 'edge_index' point to valid indices "
|
278
278
|
f"in the interval [0, {src.size(self.node_dim)}) in "
|
279
|
-
f"your node feature matrix and try again.")
|
279
|
+
f"your node feature matrix and try again.") from e
|
280
280
|
|
281
281
|
if (index.numel() > 0 and index.max() >= src.size(self.node_dim)):
|
282
282
|
raise IndexError(
|
@@ -285,7 +285,7 @@ class MessagePassing(torch.nn.Module):
|
|
285
285
|
f"{index.max().item()}). Please ensure that all "
|
286
286
|
f"indices in 'edge_index' point to valid indices "
|
287
287
|
f"in the interval [0, {src.size(self.node_dim)}) in "
|
288
|
-
f"your node feature matrix and try again.")
|
288
|
+
f"your node feature matrix and try again.") from e
|
289
289
|
|
290
290
|
raise e
|
291
291
|
|
torch_geometric/sampler/base.py
CHANGED
torch_geometric/typing.py
CHANGED
@@ -70,12 +70,12 @@ try:
|
|
70
70
|
WITH_WEIGHTED_NEIGHBOR_SAMPLE = ('edge_weight' in inspect.signature(
|
71
71
|
pyg_lib.sampler.neighbor_sample).parameters)
|
72
72
|
try:
|
73
|
-
torch.classes.pyg.CPUHashMap
|
73
|
+
torch.classes.pyg.CPUHashMap # noqa: B018
|
74
74
|
WITH_CPU_HASH_MAP = True
|
75
75
|
except Exception:
|
76
76
|
WITH_CPU_HASH_MAP = False
|
77
77
|
try:
|
78
|
-
torch.classes.pyg.CUDAHashMap
|
78
|
+
torch.classes.pyg.CUDAHashMap # noqa: B018
|
79
79
|
WITH_CUDA_HASH_MAP = True
|
80
80
|
except Exception:
|
81
81
|
WITH_CUDA_HASH_MAP = False
|
torch_geometric/utils/map.py
CHANGED
@@ -148,10 +148,11 @@ def map_index(
|
|
148
148
|
if inclusive:
|
149
149
|
try:
|
150
150
|
out = from_dlpack(result['right_ser'].to_dlpack())
|
151
|
-
except ValueError:
|
152
|
-
raise ValueError(
|
153
|
-
|
154
|
-
|
151
|
+
except ValueError as e:
|
152
|
+
raise ValueError(
|
153
|
+
"Found invalid entries in 'src' that do not "
|
154
|
+
"have a corresponding entry in 'index'. Set "
|
155
|
+
"`inclusive=False` to ignore these entries.") from e
|
155
156
|
else:
|
156
157
|
out = from_dlpack(result['right_ser'].fillna(-1).to_dlpack())
|
157
158
|
|
File without changes
|
{pyg_nightly-2.7.0.dev20250501.dist-info → pyg_nightly-2.7.0.dev20250502.dist-info}/licenses/LICENSE
RENAMED
File without changes
|