pyg-nightly 2.7.0.dev20250430__py3-none-any.whl → 2.7.0.dev20250501__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250430.dist-info → pyg_nightly-2.7.0.dev20250501.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250430.dist-info → pyg_nightly-2.7.0.dev20250501.dist-info}/RECORD +7 -7
- torch_geometric/__init__.py +1 -1
- torch_geometric/data/data.py +1 -1
- torch_geometric/data/hetero_data.py +15 -0
- {pyg_nightly-2.7.0.dev20250430.dist-info → pyg_nightly-2.7.0.dev20250501.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250430.dist-info → pyg_nightly-2.7.0.dev20250501.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250430.dist-info → pyg_nightly-2.7.0.dev20250501.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250501
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=qGS1wDoGbtxeynNNPgsI3J5OQkZYLT6Gdv7y5YuygC0,1978
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -33,7 +33,7 @@ torch_geometric/contrib/transforms/__init__.py,sha256=lrGnWsEiJf5zsBRmshGZZFN_uY
|
|
33
33
|
torch_geometric/data/__init__.py,sha256=D6Iz5A9vEb_2rpf96Zn7uM-lchZ3WpW8X7WdAD1yxKw,4565
|
34
34
|
torch_geometric/data/batch.py,sha256=C9cT7-rcWPgnG68Eb_uAcn90HS3OvOG6n4fY3ihpFhI,8764
|
35
35
|
torch_geometric/data/collate.py,sha256=RRiUMBLxDAitaHx7zF0qiMR2nW1NY_0uaNdxlUo5-bo,12756
|
36
|
-
torch_geometric/data/data.py,sha256=
|
36
|
+
torch_geometric/data/data.py,sha256=mp_jsjsaVwUcY-FghlqNZTHUQEKBdi7xWR_oA2ewrD4,43821
|
37
37
|
torch_geometric/data/database.py,sha256=VTct1xyzXsK0GZahBV9-noviCzjRteAsKMG7VgJ52n0,22998
|
38
38
|
torch_geometric/data/datapipes.py,sha256=9_Cq3j_7LIF4plQFzbLaqyy0LcpKdAic6yiKgMqSX9A,3083
|
39
39
|
torch_geometric/data/dataset.py,sha256=rNNAYeJDOQ-a6dqjWg4YKsAz0SvkMZuQK-55sRnmWnk,16769
|
@@ -41,7 +41,7 @@ torch_geometric/data/download.py,sha256=kcesTu6jlgmCeePpOxDQOnVhxB_GuZ9iu9ds72KE
|
|
41
41
|
torch_geometric/data/extract.py,sha256=X_f0JEo67DF9hOpIlq3QPWXA9RF8uoVFi195UjstzDc,2324
|
42
42
|
torch_geometric/data/feature_store.py,sha256=ma65GAHHEoYiZqHs_CkMGAYxeepGc1Bp0TMXmioIfCs,20044
|
43
43
|
torch_geometric/data/graph_store.py,sha256=EtIgsyY7RdBHRTCn34VypEBOG8cg8WzsNT_kTFKxJR4,13900
|
44
|
-
torch_geometric/data/hetero_data.py,sha256=
|
44
|
+
torch_geometric/data/hetero_data.py,sha256=IunNWq2cRDox-imtc7w3yxjLI4KfUGXkmk6wddGGnZ0,48601
|
45
45
|
torch_geometric/data/hypergraph_data.py,sha256=33hsXW25Yz4Ju8mKajYinZOrkqrUi1SqThG7MlOOYNM,8294
|
46
46
|
torch_geometric/data/in_memory_dataset.py,sha256=F35hU9Dw3qiJUL5E1CCAfq-1xrlUMstXBmQVEQdtJ1I,13403
|
47
47
|
torch_geometric/data/large_graph_indexer.py,sha256=3mF2c7BLbnAg8h5mBaG95_lyQMiXJ_uhEe5bXbX7e1M,25430
|
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
636
636
|
torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
|
637
637
|
torch_geometric/visualization/graph.py,sha256=PoI9tjbEXZVkMUg4CvTLbzqtEfzUwMUcsw57DNBEU0s,14311
|
638
638
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
639
|
-
pyg_nightly-2.7.0.
|
640
|
-
pyg_nightly-2.7.0.
|
641
|
-
pyg_nightly-2.7.0.
|
642
|
-
pyg_nightly-2.7.0.
|
639
|
+
pyg_nightly-2.7.0.dev20250501.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
640
|
+
pyg_nightly-2.7.0.dev20250501.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
641
|
+
pyg_nightly-2.7.0.dev20250501.dist-info/METADATA,sha256=e9o73e1foK1fujj2QM22ROzTGGYygxt129at-dWOelk,62979
|
642
|
+
pyg_nightly-2.7.0.dev20250501.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250501'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
torch_geometric/data/data.py
CHANGED
@@ -354,7 +354,7 @@ class BaseData:
|
|
354
354
|
"""
|
355
355
|
return self.apply(lambda x: x.contiguous(), *args)
|
356
356
|
|
357
|
-
def to(self, device: Union[int, str], *args: str,
|
357
|
+
def to(self, device: Union[int, str, torch.device], *args: str,
|
358
358
|
non_blocking: bool = False):
|
359
359
|
r"""Performs tensor device conversion, either for all attributes or
|
360
360
|
only the ones given in :obj:`*args`.
|
@@ -282,6 +282,21 @@ class HeteroData(BaseData, FeatureStore, GraphStore):
|
|
282
282
|
r"""Returns a list of edge type and edge storage pairs."""
|
283
283
|
return list(self._edge_store_dict.items())
|
284
284
|
|
285
|
+
@property
|
286
|
+
def input_type(self) -> Optional[Union[NodeType, EdgeType]]:
|
287
|
+
r"""Returns the seed/input node/edge type of the graph in case it
|
288
|
+
refers to a sampled subgraph, *e.g.*, obtained via
|
289
|
+
:class:`~torch_geometric.loader.NeighborLoader` or
|
290
|
+
:class:`~torch_geometric.loader.LinkNeighborLoader`.
|
291
|
+
"""
|
292
|
+
for node_type, store in self.node_items():
|
293
|
+
if hasattr(store, 'input_id'):
|
294
|
+
return node_type
|
295
|
+
for edge_type, store in self.edge_items():
|
296
|
+
if hasattr(store, 'input_id'):
|
297
|
+
return edge_type
|
298
|
+
return None
|
299
|
+
|
285
300
|
def to_dict(self) -> Dict[str, Any]:
|
286
301
|
out_dict: Dict[str, Any] = {}
|
287
302
|
out_dict['_global_store'] = self._global_store.to_dict()
|
File without changes
|
{pyg_nightly-2.7.0.dev20250430.dist-info → pyg_nightly-2.7.0.dev20250501.dist-info}/licenses/LICENSE
RENAMED
File without changes
|