pyg-nightly 2.7.0.dev20250429__py3-none-any.whl → 2.7.0.dev20250501__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250429
3
+ Version: 2.7.0.dev20250501
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=Fn0Tk4CEGmrh27S4w7JxkbV3OwwAKExri7NzXE8-dQE,1978
1
+ torch_geometric/__init__.py,sha256=qGS1wDoGbtxeynNNPgsI3J5OQkZYLT6Gdv7y5YuygC0,1978
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -33,7 +33,7 @@ torch_geometric/contrib/transforms/__init__.py,sha256=lrGnWsEiJf5zsBRmshGZZFN_uY
33
33
  torch_geometric/data/__init__.py,sha256=D6Iz5A9vEb_2rpf96Zn7uM-lchZ3WpW8X7WdAD1yxKw,4565
34
34
  torch_geometric/data/batch.py,sha256=C9cT7-rcWPgnG68Eb_uAcn90HS3OvOG6n4fY3ihpFhI,8764
35
35
  torch_geometric/data/collate.py,sha256=RRiUMBLxDAitaHx7zF0qiMR2nW1NY_0uaNdxlUo5-bo,12756
36
- torch_geometric/data/data.py,sha256=l_gHy18g9WtiSCm1mDinR4vGrZOLetogrw5wJEcn23E,43807
36
+ torch_geometric/data/data.py,sha256=mp_jsjsaVwUcY-FghlqNZTHUQEKBdi7xWR_oA2ewrD4,43821
37
37
  torch_geometric/data/database.py,sha256=VTct1xyzXsK0GZahBV9-noviCzjRteAsKMG7VgJ52n0,22998
38
38
  torch_geometric/data/datapipes.py,sha256=9_Cq3j_7LIF4plQFzbLaqyy0LcpKdAic6yiKgMqSX9A,3083
39
39
  torch_geometric/data/dataset.py,sha256=rNNAYeJDOQ-a6dqjWg4YKsAz0SvkMZuQK-55sRnmWnk,16769
@@ -41,7 +41,7 @@ torch_geometric/data/download.py,sha256=kcesTu6jlgmCeePpOxDQOnVhxB_GuZ9iu9ds72KE
41
41
  torch_geometric/data/extract.py,sha256=X_f0JEo67DF9hOpIlq3QPWXA9RF8uoVFi195UjstzDc,2324
42
42
  torch_geometric/data/feature_store.py,sha256=ma65GAHHEoYiZqHs_CkMGAYxeepGc1Bp0TMXmioIfCs,20044
43
43
  torch_geometric/data/graph_store.py,sha256=EtIgsyY7RdBHRTCn34VypEBOG8cg8WzsNT_kTFKxJR4,13900
44
- torch_geometric/data/hetero_data.py,sha256=q0L3bENyEvo_BGLPwZPVzh730Aak6sQ7yXoawPgM72E,47982
44
+ torch_geometric/data/hetero_data.py,sha256=IunNWq2cRDox-imtc7w3yxjLI4KfUGXkmk6wddGGnZ0,48601
45
45
  torch_geometric/data/hypergraph_data.py,sha256=33hsXW25Yz4Ju8mKajYinZOrkqrUi1SqThG7MlOOYNM,8294
46
46
  torch_geometric/data/in_memory_dataset.py,sha256=F35hU9Dw3qiJUL5E1CCAfq-1xrlUMstXBmQVEQdtJ1I,13403
47
47
  torch_geometric/data/large_graph_indexer.py,sha256=3mF2c7BLbnAg8h5mBaG95_lyQMiXJ_uhEe5bXbX7e1M,25430
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
636
636
  torch_geometric/visualization/__init__.py,sha256=b-HnVesXjyJ_L1N-DnjiRiRVf7lhwKaBQF_2i5YMVSU,208
637
637
  torch_geometric/visualization/graph.py,sha256=PoI9tjbEXZVkMUg4CvTLbzqtEfzUwMUcsw57DNBEU0s,14311
638
638
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
639
- pyg_nightly-2.7.0.dev20250429.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
640
- pyg_nightly-2.7.0.dev20250429.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
641
- pyg_nightly-2.7.0.dev20250429.dist-info/METADATA,sha256=ywTA_H23sidl8wVuvJPmwZWso1slTN7-GwOKR6MSf04,62979
642
- pyg_nightly-2.7.0.dev20250429.dist-info/RECORD,,
639
+ pyg_nightly-2.7.0.dev20250501.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
640
+ pyg_nightly-2.7.0.dev20250501.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
641
+ pyg_nightly-2.7.0.dev20250501.dist-info/METADATA,sha256=e9o73e1foK1fujj2QM22ROzTGGYygxt129at-dWOelk,62979
642
+ pyg_nightly-2.7.0.dev20250501.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250429'
34
+ __version__ = '2.7.0.dev20250501'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -354,7 +354,7 @@ class BaseData:
354
354
  """
355
355
  return self.apply(lambda x: x.contiguous(), *args)
356
356
 
357
- def to(self, device: Union[int, str], *args: str,
357
+ def to(self, device: Union[int, str, torch.device], *args: str,
358
358
  non_blocking: bool = False):
359
359
  r"""Performs tensor device conversion, either for all attributes or
360
360
  only the ones given in :obj:`*args`.
@@ -282,6 +282,21 @@ class HeteroData(BaseData, FeatureStore, GraphStore):
282
282
  r"""Returns a list of edge type and edge storage pairs."""
283
283
  return list(self._edge_store_dict.items())
284
284
 
285
+ @property
286
+ def input_type(self) -> Optional[Union[NodeType, EdgeType]]:
287
+ r"""Returns the seed/input node/edge type of the graph in case it
288
+ refers to a sampled subgraph, *e.g.*, obtained via
289
+ :class:`~torch_geometric.loader.NeighborLoader` or
290
+ :class:`~torch_geometric.loader.LinkNeighborLoader`.
291
+ """
292
+ for node_type, store in self.node_items():
293
+ if hasattr(store, 'input_id'):
294
+ return node_type
295
+ for edge_type, store in self.edge_items():
296
+ if hasattr(store, 'input_id'):
297
+ return edge_type
298
+ return None
299
+
285
300
  def to_dict(self) -> Dict[str, Any]:
286
301
  out_dict: Dict[str, Any] = {}
287
302
  out_dict['_global_store'] = self._global_store.to_dict()