pyg-nightly 2.7.0.dev20250414__py3-none-any.whl → 2.7.0.dev20250416__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250414.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/METADATA +8 -1
- {pyg_nightly-2.7.0.dev20250414.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/RECORD +10 -10
- torch_geometric/__init__.py +1 -1
- torch_geometric/data/large_graph_indexer.py +3 -2
- torch_geometric/nn/models/gpse.py +5 -3
- torch_geometric/testing/__init__.py +2 -0
- torch_geometric/testing/decorators.py +17 -0
- torch_geometric/transforms/add_gpse.py +4 -3
- {pyg_nightly-2.7.0.dev20250414.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250414.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250414.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250416
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -61,6 +61,12 @@ Requires-Dist: protobuf<4.21 ; extra == "graphgym"
|
|
61
61
|
Requires-Dist: pytorch-lightning<2.3.0 ; extra == "graphgym"
|
62
62
|
Requires-Dist: yacs ; extra == "graphgym"
|
63
63
|
Requires-Dist: huggingface_hub ; extra == "modelhub"
|
64
|
+
Requires-Dist: pcst_fast ; extra == "rag"
|
65
|
+
Requires-Dist: datasets ; extra == "rag"
|
66
|
+
Requires-Dist: transformers ; extra == "rag"
|
67
|
+
Requires-Dist: pandas ; extra == "rag"
|
68
|
+
Requires-Dist: sentencepiece ; extra == "rag"
|
69
|
+
Requires-Dist: accelerate ; extra == "rag"
|
64
70
|
Requires-Dist: onnx ; extra == "test"
|
65
71
|
Requires-Dist: onnxruntime ; extra == "test"
|
66
72
|
Requires-Dist: pytest ; extra == "test"
|
@@ -74,6 +80,7 @@ Provides-Extra: dev
|
|
74
80
|
Provides-Extra: full
|
75
81
|
Provides-Extra: graphgym
|
76
82
|
Provides-Extra: modelhub
|
83
|
+
Provides-Extra: rag
|
77
84
|
Provides-Extra: test
|
78
85
|
|
79
86
|
<p align="center">
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=en3YAn8JWtZUWaMs1gx9X-Z0xZM9IfGB3fvTW53cJno,1978
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -44,7 +44,7 @@ torch_geometric/data/graph_store.py,sha256=EtIgsyY7RdBHRTCn34VypEBOG8cg8WzsNT_kT
|
|
44
44
|
torch_geometric/data/hetero_data.py,sha256=q0L3bENyEvo_BGLPwZPVzh730Aak6sQ7yXoawPgM72E,47982
|
45
45
|
torch_geometric/data/hypergraph_data.py,sha256=33hsXW25Yz4Ju8mKajYinZOrkqrUi1SqThG7MlOOYNM,8294
|
46
46
|
torch_geometric/data/in_memory_dataset.py,sha256=F35hU9Dw3qiJUL5E1CCAfq-1xrlUMstXBmQVEQdtJ1I,13403
|
47
|
-
torch_geometric/data/large_graph_indexer.py,sha256=
|
47
|
+
torch_geometric/data/large_graph_indexer.py,sha256=3mF2c7BLbnAg8h5mBaG95_lyQMiXJ_uhEe5bXbX7e1M,25430
|
48
48
|
torch_geometric/data/makedirs.py,sha256=6uOv4y34i947cm4rv7Aj2_YZBq-EOsyPKnlGA188YSw,463
|
49
49
|
torch_geometric/data/on_disk_dataset.py,sha256=77om-e6kzcpBb77kf7um1xY8-yHmQaao_6R7I-3NwHk,6629
|
50
50
|
torch_geometric/data/remote_backend_utils.py,sha256=Rzpq1PczXuHhUscrFtIAL6dua6pMehSJlXG7yEsrrrg,4503
|
@@ -441,7 +441,7 @@ torch_geometric/nn/models/g_retriever.py,sha256=CdSOasnPiMvq5AjduNTpz-LIZiNp3X0x
|
|
441
441
|
torch_geometric/nn/models/git_mol.py,sha256=Wc6Hx6RDDR7sDWRWHfA5eK9e9gFsrTZ9OLmpMfoj3pE,12676
|
442
442
|
torch_geometric/nn/models/glem.py,sha256=sT0XM4klVlci9wduvUoXupATUw9p25uXtaJBrmv3yvs,16431
|
443
443
|
torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
|
444
|
-
torch_geometric/nn/models/gpse.py,sha256=
|
444
|
+
torch_geometric/nn/models/gpse.py,sha256=NSN7yL98a9KzPjhwEpqOyx4RVtEfOPhFc0opejpTGVk,41981
|
445
445
|
torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
|
446
446
|
torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
|
447
447
|
torch_geometric/nn/models/jumping_knowledge.py,sha256=9JR2EoViXKjcDSLb8tjJm-UHfv1mQCJvZAAEsYa0Ocw,5496
|
@@ -515,15 +515,15 @@ torch_geometric/sampler/base.py,sha256=kT6hYM6losYta3pqLQlqiqboJiujLy6RlH8qM--U_
|
|
515
515
|
torch_geometric/sampler/hgt_sampler.py,sha256=UAm8_wwzEcziKDJ8-TnfZh1705dXRsy_I5PKhZSDTK8,2721
|
516
516
|
torch_geometric/sampler/neighbor_sampler.py,sha256=MAVphWqNf0-cwlHRvdiU8de86dBxwjm3Miam_6s1ep4,33971
|
517
517
|
torch_geometric/sampler/utils.py,sha256=RJtasO6Q7Pp3oYEOWrbf2DEYuSfuKZOsF2I7-eJDnoA,5485
|
518
|
-
torch_geometric/testing/__init__.py,sha256=
|
518
|
+
torch_geometric/testing/__init__.py,sha256=m3yp_5UnCAxVgzTFofpiVt0vdbl5GwVAve8WTrAaNxo,1319
|
519
519
|
torch_geometric/testing/asserts.py,sha256=DLC9HnBgFWuTIiQs2OalsQcXGhOVG-e6R99IWhkO32c,4606
|
520
520
|
torch_geometric/testing/data.py,sha256=O1qo8FyNxt6RGf63Ys3eXBfa5RvYydeZLk74szrez3c,2604
|
521
|
-
torch_geometric/testing/decorators.py,sha256=
|
521
|
+
torch_geometric/testing/decorators.py,sha256=k7QtPWz-8Ft89cvKmZt8y1h00j2BB1yhEHwmGzTcol0,9075
|
522
522
|
torch_geometric/testing/distributed.py,sha256=ZZCCXqiQC4-m1ExSjDZhS_a1qPXnHEwhJGTmACxNnVI,2227
|
523
523
|
torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS1m2H7d6OUxs,2158
|
524
524
|
torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
|
525
525
|
torch_geometric/transforms/__init__.py,sha256=P0R2CFg9pXxjTX4NnYfNPrifRPAw5lVXEOxO80q-1Ek,4296
|
526
|
-
torch_geometric/transforms/add_gpse.py,sha256=
|
526
|
+
torch_geometric/transforms/add_gpse.py,sha256=ex7cSLmcSIn-dC5gbic-CLwKegV5Is7Y8mUn-mSOWXg,1555
|
527
527
|
torch_geometric/transforms/add_metapaths.py,sha256=GabaPRvUnpFrZJsxLMUBY2Egzx94GTgsMxegL_qTtbk,14239
|
528
528
|
torch_geometric/transforms/add_positional_encoding.py,sha256=tuilyubAn3yeyz8mvFc5zxXTlNzh8okKzG9AE2lPG1Q,6049
|
529
529
|
torch_geometric/transforms/add_remaining_self_loops.py,sha256=ItU5FAcE-mkbp_wqTLkRhv0RShR5JVr8vr9d5xv3_Ak,2085
|
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
636
636
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
637
637
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
638
638
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
639
|
-
pyg_nightly-2.7.0.
|
640
|
-
pyg_nightly-2.7.0.
|
641
|
-
pyg_nightly-2.7.0.
|
642
|
-
pyg_nightly-2.7.0.
|
639
|
+
pyg_nightly-2.7.0.dev20250416.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
640
|
+
pyg_nightly-2.7.0.dev20250416.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
641
|
+
pyg_nightly-2.7.0.dev20250416.dist-info/METADATA,sha256=yDodf56EgttruZas0nqEgbfnFaNHm03BHQsFi-IkPf0,62979
|
642
|
+
pyg_nightly-2.7.0.dev20250416.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250416'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -22,6 +22,7 @@ from torch import Tensor
|
|
22
22
|
from tqdm import tqdm
|
23
23
|
|
24
24
|
from torch_geometric.data import Data
|
25
|
+
from torch_geometric.io import fs
|
25
26
|
from torch_geometric.typing import WITH_PT24
|
26
27
|
|
27
28
|
# Could be any hashable type
|
@@ -505,13 +506,13 @@ class LargeGraphIndexer:
|
|
505
506
|
for fname in os.listdir(node_attr_path):
|
506
507
|
full_fname = f"{node_attr_path}/{fname}"
|
507
508
|
key = fname.split(".")[0]
|
508
|
-
indexer.node_attr[key] =
|
509
|
+
indexer.node_attr[key] = fs.torch_load(full_fname)
|
509
510
|
|
510
511
|
edge_attr_path = path + "/edge_attr"
|
511
512
|
for fname in os.listdir(edge_attr_path):
|
512
513
|
full_fname = f"{edge_attr_path}/{fname}"
|
513
514
|
key = fname.split(".")[0]
|
514
|
-
indexer.edge_attr[key] =
|
515
|
+
indexer.edge_attr[key] = fs.torch_load(full_fname)
|
515
516
|
|
516
517
|
return indexer
|
517
518
|
|
@@ -9,6 +9,7 @@ import numpy as np
|
|
9
9
|
import torch
|
10
10
|
import torch.nn as nn
|
11
11
|
import torch.nn.functional as F
|
12
|
+
from torch.nn import Module
|
12
13
|
from tqdm import trange
|
13
14
|
|
14
15
|
import torch_geometric.transforms as T
|
@@ -715,8 +716,9 @@ class GPSENodeEncoder(torch.nn.Module):
|
|
715
716
|
|
716
717
|
|
717
718
|
@torch.no_grad()
|
718
|
-
def gpse_process(model:
|
719
|
-
|
719
|
+
def gpse_process(model: Module, data: Data, rand_type: str,
|
720
|
+
use_vn: bool = True, bernoulli_thresh: float = 0.5,
|
721
|
+
neighbor_loader: bool = False,
|
720
722
|
num_neighbors: List[int] = [30, 20, 10], fillval: int = 5,
|
721
723
|
layers_mp: int = None, **kwargs) -> torch.Tensor:
|
722
724
|
r"""Processes the data using the :class:`GPSE` model to generate and append
|
@@ -731,7 +733,7 @@ def gpse_process(model: GPSE, data: Data, rand_type: str, use_vn: bool = True,
|
|
731
733
|
:obj:`precompute_GPSE` on your whole dataset is advised instead.
|
732
734
|
|
733
735
|
Args:
|
734
|
-
model (
|
736
|
+
model (Module): The :class:`GPSE` model.
|
735
737
|
data (torch_geometric.data.Data): A :class:`~torch_geometric.data.Data`
|
736
738
|
object.
|
737
739
|
rand_type (str, optional): Type of random features to use. Options are
|
@@ -17,6 +17,7 @@ from .decorators import (
|
|
17
17
|
onlyOnline,
|
18
18
|
onlyGraphviz,
|
19
19
|
onlyNeighborSampler,
|
20
|
+
onlyRAG,
|
20
21
|
has_package,
|
21
22
|
withPackage,
|
22
23
|
withDevice,
|
@@ -49,6 +50,7 @@ __all__ = [
|
|
49
50
|
'onlyOnline',
|
50
51
|
'onlyGraphviz',
|
51
52
|
'onlyNeighborSampler',
|
53
|
+
'onlyRAG',
|
52
54
|
'has_package',
|
53
55
|
'withPackage',
|
54
56
|
'withDevice',
|
@@ -15,6 +15,11 @@ from torch_geometric.typing import WITH_METIS, WITH_PYG_LIB, WITH_TORCH_SPARSE
|
|
15
15
|
from torch_geometric.visualization.graph import has_graphviz
|
16
16
|
|
17
17
|
|
18
|
+
def is_rag_test() -> bool:
|
19
|
+
r"""Whether to run the RAG test suite."""
|
20
|
+
return os.getenv('RAG_TEST', '0') == '1'
|
21
|
+
|
22
|
+
|
18
23
|
def is_full_test() -> bool:
|
19
24
|
r"""Whether to run the full but time-consuming test suite."""
|
20
25
|
return os.getenv('FULL_TEST', '0') == '1'
|
@@ -204,6 +209,18 @@ def withPackage(*args: str) -> Callable:
|
|
204
209
|
return decorator
|
205
210
|
|
206
211
|
|
212
|
+
def onlyRAG(func: Callable) -> Callable:
|
213
|
+
r"""A decorator to specify that this function belongs to the RAG test
|
214
|
+
suite.
|
215
|
+
"""
|
216
|
+
import pytest
|
217
|
+
func = pytest.mark.rag(func)
|
218
|
+
return pytest.mark.skipif(
|
219
|
+
not is_rag_test(),
|
220
|
+
reason="RAG tests are disabled",
|
221
|
+
)(func)
|
222
|
+
|
223
|
+
|
207
224
|
def withCUDA(func: Callable) -> Callable:
|
208
225
|
r"""A decorator to test both on CPU and CUDA (if available)."""
|
209
226
|
import pytest
|
@@ -1,6 +1,7 @@
|
|
1
|
+
from torch.nn import Module
|
2
|
+
|
1
3
|
from torch_geometric.data import Data
|
2
4
|
from torch_geometric.data.datapipes import functional_transform
|
3
|
-
from torch_geometric.nn.models.gpse import GPSE
|
4
5
|
from torch_geometric.transforms import BaseTransform, VirtualNode
|
5
6
|
|
6
7
|
|
@@ -13,7 +14,7 @@ class AddGPSE(BaseTransform):
|
|
13
14
|
the actual encodings.
|
14
15
|
|
15
16
|
Args:
|
16
|
-
model (
|
17
|
+
model (Module): The pre-trained GPSE model.
|
17
18
|
use_vn (bool, optional): Whether to use virtual nodes.
|
18
19
|
(default: :obj:`True`)
|
19
20
|
rand_type (str, optional): Type of random features to use. Options are
|
@@ -21,7 +22,7 @@ class AddGPSE(BaseTransform):
|
|
21
22
|
(default: :obj:`NormalSE`)
|
22
23
|
|
23
24
|
"""
|
24
|
-
def __init__(self, model:
|
25
|
+
def __init__(self, model: Module, use_vn: bool = True,
|
25
26
|
rand_type: str = 'NormalSE'):
|
26
27
|
self.model = model
|
27
28
|
self.use_vn = use_vn
|
File without changes
|
{pyg_nightly-2.7.0.dev20250414.dist-info → pyg_nightly-2.7.0.dev20250416.dist-info}/licenses/LICENSE
RENAMED
File without changes
|