pyg-nightly 2.7.0.dev20250413__py3-none-any.whl → 2.7.0.dev20250415__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250413.dist-info → pyg_nightly-2.7.0.dev20250415.dist-info}/METADATA +8 -1
- {pyg_nightly-2.7.0.dev20250413.dist-info → pyg_nightly-2.7.0.dev20250415.dist-info}/RECORD +8 -8
- torch_geometric/__init__.py +1 -1
- torch_geometric/data/large_graph_indexer.py +3 -2
- torch_geometric/testing/__init__.py +2 -0
- torch_geometric/testing/decorators.py +17 -0
- {pyg_nightly-2.7.0.dev20250413.dist-info → pyg_nightly-2.7.0.dev20250415.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250413.dist-info → pyg_nightly-2.7.0.dev20250415.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250413.dist-info → pyg_nightly-2.7.0.dev20250415.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250415
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -61,6 +61,12 @@ Requires-Dist: protobuf<4.21 ; extra == "graphgym"
|
|
61
61
|
Requires-Dist: pytorch-lightning<2.3.0 ; extra == "graphgym"
|
62
62
|
Requires-Dist: yacs ; extra == "graphgym"
|
63
63
|
Requires-Dist: huggingface_hub ; extra == "modelhub"
|
64
|
+
Requires-Dist: pcst_fast ; extra == "rag"
|
65
|
+
Requires-Dist: datasets ; extra == "rag"
|
66
|
+
Requires-Dist: transformers ; extra == "rag"
|
67
|
+
Requires-Dist: pandas ; extra == "rag"
|
68
|
+
Requires-Dist: sentencepiece ; extra == "rag"
|
69
|
+
Requires-Dist: accelerate ; extra == "rag"
|
64
70
|
Requires-Dist: onnx ; extra == "test"
|
65
71
|
Requires-Dist: onnxruntime ; extra == "test"
|
66
72
|
Requires-Dist: pytest ; extra == "test"
|
@@ -74,6 +80,7 @@ Provides-Extra: dev
|
|
74
80
|
Provides-Extra: full
|
75
81
|
Provides-Extra: graphgym
|
76
82
|
Provides-Extra: modelhub
|
83
|
+
Provides-Extra: rag
|
77
84
|
Provides-Extra: test
|
78
85
|
|
79
86
|
<p align="center">
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=duIwc82SKXqJlQNFyCjs7Ep17yCY5jrbuLKyaZ4Qd_Y,1978
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -44,7 +44,7 @@ torch_geometric/data/graph_store.py,sha256=EtIgsyY7RdBHRTCn34VypEBOG8cg8WzsNT_kT
|
|
44
44
|
torch_geometric/data/hetero_data.py,sha256=q0L3bENyEvo_BGLPwZPVzh730Aak6sQ7yXoawPgM72E,47982
|
45
45
|
torch_geometric/data/hypergraph_data.py,sha256=33hsXW25Yz4Ju8mKajYinZOrkqrUi1SqThG7MlOOYNM,8294
|
46
46
|
torch_geometric/data/in_memory_dataset.py,sha256=F35hU9Dw3qiJUL5E1CCAfq-1xrlUMstXBmQVEQdtJ1I,13403
|
47
|
-
torch_geometric/data/large_graph_indexer.py,sha256=
|
47
|
+
torch_geometric/data/large_graph_indexer.py,sha256=3mF2c7BLbnAg8h5mBaG95_lyQMiXJ_uhEe5bXbX7e1M,25430
|
48
48
|
torch_geometric/data/makedirs.py,sha256=6uOv4y34i947cm4rv7Aj2_YZBq-EOsyPKnlGA188YSw,463
|
49
49
|
torch_geometric/data/on_disk_dataset.py,sha256=77om-e6kzcpBb77kf7um1xY8-yHmQaao_6R7I-3NwHk,6629
|
50
50
|
torch_geometric/data/remote_backend_utils.py,sha256=Rzpq1PczXuHhUscrFtIAL6dua6pMehSJlXG7yEsrrrg,4503
|
@@ -515,10 +515,10 @@ torch_geometric/sampler/base.py,sha256=kT6hYM6losYta3pqLQlqiqboJiujLy6RlH8qM--U_
|
|
515
515
|
torch_geometric/sampler/hgt_sampler.py,sha256=UAm8_wwzEcziKDJ8-TnfZh1705dXRsy_I5PKhZSDTK8,2721
|
516
516
|
torch_geometric/sampler/neighbor_sampler.py,sha256=MAVphWqNf0-cwlHRvdiU8de86dBxwjm3Miam_6s1ep4,33971
|
517
517
|
torch_geometric/sampler/utils.py,sha256=RJtasO6Q7Pp3oYEOWrbf2DEYuSfuKZOsF2I7-eJDnoA,5485
|
518
|
-
torch_geometric/testing/__init__.py,sha256=
|
518
|
+
torch_geometric/testing/__init__.py,sha256=m3yp_5UnCAxVgzTFofpiVt0vdbl5GwVAve8WTrAaNxo,1319
|
519
519
|
torch_geometric/testing/asserts.py,sha256=DLC9HnBgFWuTIiQs2OalsQcXGhOVG-e6R99IWhkO32c,4606
|
520
520
|
torch_geometric/testing/data.py,sha256=O1qo8FyNxt6RGf63Ys3eXBfa5RvYydeZLk74szrez3c,2604
|
521
|
-
torch_geometric/testing/decorators.py,sha256=
|
521
|
+
torch_geometric/testing/decorators.py,sha256=k7QtPWz-8Ft89cvKmZt8y1h00j2BB1yhEHwmGzTcol0,9075
|
522
522
|
torch_geometric/testing/distributed.py,sha256=ZZCCXqiQC4-m1ExSjDZhS_a1qPXnHEwhJGTmACxNnVI,2227
|
523
523
|
torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS1m2H7d6OUxs,2158
|
524
524
|
torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
|
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
636
636
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
637
637
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
638
638
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
639
|
-
pyg_nightly-2.7.0.
|
640
|
-
pyg_nightly-2.7.0.
|
641
|
-
pyg_nightly-2.7.0.
|
642
|
-
pyg_nightly-2.7.0.
|
639
|
+
pyg_nightly-2.7.0.dev20250415.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
640
|
+
pyg_nightly-2.7.0.dev20250415.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
641
|
+
pyg_nightly-2.7.0.dev20250415.dist-info/METADATA,sha256=WwXaZamewCWf7Ll2a67U4vRjebf09NmPizYYQDmjJz0,62979
|
642
|
+
pyg_nightly-2.7.0.dev20250415.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250415'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -22,6 +22,7 @@ from torch import Tensor
|
|
22
22
|
from tqdm import tqdm
|
23
23
|
|
24
24
|
from torch_geometric.data import Data
|
25
|
+
from torch_geometric.io import fs
|
25
26
|
from torch_geometric.typing import WITH_PT24
|
26
27
|
|
27
28
|
# Could be any hashable type
|
@@ -505,13 +506,13 @@ class LargeGraphIndexer:
|
|
505
506
|
for fname in os.listdir(node_attr_path):
|
506
507
|
full_fname = f"{node_attr_path}/{fname}"
|
507
508
|
key = fname.split(".")[0]
|
508
|
-
indexer.node_attr[key] =
|
509
|
+
indexer.node_attr[key] = fs.torch_load(full_fname)
|
509
510
|
|
510
511
|
edge_attr_path = path + "/edge_attr"
|
511
512
|
for fname in os.listdir(edge_attr_path):
|
512
513
|
full_fname = f"{edge_attr_path}/{fname}"
|
513
514
|
key = fname.split(".")[0]
|
514
|
-
indexer.edge_attr[key] =
|
515
|
+
indexer.edge_attr[key] = fs.torch_load(full_fname)
|
515
516
|
|
516
517
|
return indexer
|
517
518
|
|
@@ -17,6 +17,7 @@ from .decorators import (
|
|
17
17
|
onlyOnline,
|
18
18
|
onlyGraphviz,
|
19
19
|
onlyNeighborSampler,
|
20
|
+
onlyRAG,
|
20
21
|
has_package,
|
21
22
|
withPackage,
|
22
23
|
withDevice,
|
@@ -49,6 +50,7 @@ __all__ = [
|
|
49
50
|
'onlyOnline',
|
50
51
|
'onlyGraphviz',
|
51
52
|
'onlyNeighborSampler',
|
53
|
+
'onlyRAG',
|
52
54
|
'has_package',
|
53
55
|
'withPackage',
|
54
56
|
'withDevice',
|
@@ -15,6 +15,11 @@ from torch_geometric.typing import WITH_METIS, WITH_PYG_LIB, WITH_TORCH_SPARSE
|
|
15
15
|
from torch_geometric.visualization.graph import has_graphviz
|
16
16
|
|
17
17
|
|
18
|
+
def is_rag_test() -> bool:
|
19
|
+
r"""Whether to run the RAG test suite."""
|
20
|
+
return os.getenv('RAG_TEST', '0') == '1'
|
21
|
+
|
22
|
+
|
18
23
|
def is_full_test() -> bool:
|
19
24
|
r"""Whether to run the full but time-consuming test suite."""
|
20
25
|
return os.getenv('FULL_TEST', '0') == '1'
|
@@ -204,6 +209,18 @@ def withPackage(*args: str) -> Callable:
|
|
204
209
|
return decorator
|
205
210
|
|
206
211
|
|
212
|
+
def onlyRAG(func: Callable) -> Callable:
|
213
|
+
r"""A decorator to specify that this function belongs to the RAG test
|
214
|
+
suite.
|
215
|
+
"""
|
216
|
+
import pytest
|
217
|
+
func = pytest.mark.rag(func)
|
218
|
+
return pytest.mark.skipif(
|
219
|
+
not is_rag_test(),
|
220
|
+
reason="RAG tests are disabled",
|
221
|
+
)(func)
|
222
|
+
|
223
|
+
|
207
224
|
def withCUDA(func: Callable) -> Callable:
|
208
225
|
r"""A decorator to test both on CPU and CUDA (if available)."""
|
209
226
|
import pytest
|
File without changes
|
{pyg_nightly-2.7.0.dev20250413.dist-info → pyg_nightly-2.7.0.dev20250415.dist-info}/licenses/LICENSE
RENAMED
File without changes
|