pyg-nightly 2.7.0.dev20250410__py3-none-any.whl → 2.7.0.dev20250411__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250410
3
+ Version: 2.7.0.dev20250411
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -13,6 +13,7 @@ Classifier: Programming Language :: Python :: 3.9
13
13
  Classifier: Programming Language :: Python :: 3.10
14
14
  Classifier: Programming Language :: Python :: 3.11
15
15
  Classifier: Programming Language :: Python :: 3.12
16
+ Classifier: Programming Language :: Python :: 3.13
16
17
  Classifier: Programming Language :: Python :: 3 :: Only
17
18
  License-File: LICENSE
18
19
  Requires-Dist: aiohttp
@@ -411,7 +412,7 @@ These approaches have been implemented in PyG, and can benefit from the above GN
411
412
 
412
413
  ## Installation
413
414
 
414
- PyG is available for Python 3.9 to Python 3.12.
415
+ PyG is available for Python 3.9 to Python 3.13.
415
416
 
416
417
  From **PyG 2.3** onwards, you can install and use PyG **without any external library** required except for PyTorch.
417
418
  For this, simply run
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=8STFnZ5D5SJ_NXByr6Uts6yFesA2ot2-To0NNYU8MqE,1978
1
+ torch_geometric/__init__.py,sha256=5jyXuTotTDAXoFpYa157TW_x88VLzZsbeo_2LDBcf70,1978
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -395,7 +395,7 @@ torch_geometric/nn/conv/spline_conv.py,sha256=RzxHKlBAitCRIBbj2Co7MH6HCFwhlzVD2t
395
395
  torch_geometric/nn/conv/ssg_conv.py,sha256=qHjvBwppfazl5qCVsmZz0X1gl9M1fFsVHke9nOArT9w,5131
396
396
  torch_geometric/nn/conv/supergat_conv.py,sha256=ul0qyLBlMFYFDlwvF_vszqcxiX9hA9eeK9p8AUIAs8M,12420
397
397
  torch_geometric/nn/conv/tag_conv.py,sha256=nYcRVQzKqJhe9qmW0QQWHlQielm9AH4gM9AcsiF2ELo,4164
398
- torch_geometric/nn/conv/transformer_conv.py,sha256=kEHP-qy2Fo1sKY1AoobknTBzBpT8wnI0SehsFgQwT0s,10407
398
+ torch_geometric/nn/conv/transformer_conv.py,sha256=SqtzV9lQwP_Uvmoc428P2ZNdisSWmgu9qq5t8wUV3iQ,10504
399
399
  torch_geometric/nn/conv/wl_conv.py,sha256=je4EM8rVrxG0h9-CWmgXZJnMVhns_VjAVbeqb_tOwos,3140
400
400
  torch_geometric/nn/conv/wl_conv_continuous.py,sha256=nnfd5JVAR2UYz6AQxwCN2a8C6RXDMZVL-WE_wPXKFsU,2777
401
401
  torch_geometric/nn/conv/x_conv.py,sha256=c_qnD-o9-qMa-vaOgEDGb5ZT1NdhS2vrhTQdp-8cYIo,6013
@@ -518,7 +518,7 @@ torch_geometric/sampler/utils.py,sha256=RJtasO6Q7Pp3oYEOWrbf2DEYuSfuKZOsF2I7-eJD
518
518
  torch_geometric/testing/__init__.py,sha256=0mAGVWRrTBNsGV2YUkCu_FkyQ8JIcrYVw2LsdKgY9ak,1291
519
519
  torch_geometric/testing/asserts.py,sha256=DLC9HnBgFWuTIiQs2OalsQcXGhOVG-e6R99IWhkO32c,4606
520
520
  torch_geometric/testing/data.py,sha256=O1qo8FyNxt6RGf63Ys3eXBfa5RvYydeZLk74szrez3c,2604
521
- torch_geometric/testing/decorators.py,sha256=j45wlxMB1-Pn3wPKBgDziqg6KkWJUb_fcwfUXzkL2mM,8677
521
+ torch_geometric/testing/decorators.py,sha256=BaaQRGgU1r1_p3OTpSLzgUaROq6EB2vojq4VKSzXE6w,8657
522
522
  torch_geometric/testing/distributed.py,sha256=ZZCCXqiQC4-m1ExSjDZhS_a1qPXnHEwhJGTmACxNnVI,2227
523
523
  torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS1m2H7d6OUxs,2158
524
524
  torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
636
636
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
637
637
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
638
638
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
639
- pyg_nightly-2.7.0.dev20250410.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
640
- pyg_nightly-2.7.0.dev20250410.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
641
- pyg_nightly-2.7.0.dev20250410.dist-info/METADATA,sha256=VCJmk0zw0oTq7-7e5BugaUHh2XfOxL-KeSNLRqqhtHA,62652
642
- pyg_nightly-2.7.0.dev20250410.dist-info/RECORD,,
639
+ pyg_nightly-2.7.0.dev20250411.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
640
+ pyg_nightly-2.7.0.dev20250411.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
641
+ pyg_nightly-2.7.0.dev20250411.dist-info/METADATA,sha256=bF_PoHTK8G7dyiEt49wMpwWWukdKa_xa0XOz7flRH_M,62703
642
+ pyg_nightly-2.7.0.dev20250411.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250410'
34
+ __version__ = '2.7.0.dev20250411'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -126,9 +126,11 @@ class TransformerConv(MessagePassing):
126
126
  if isinstance(in_channels, int):
127
127
  in_channels = (in_channels, in_channels)
128
128
 
129
- self.lin_key = Linear(in_channels[0], heads * out_channels)
130
- self.lin_query = Linear(in_channels[1], heads * out_channels)
131
- self.lin_value = Linear(in_channels[0], heads * out_channels)
129
+ self.lin_key = Linear(in_channels[0], heads * out_channels, bias=bias)
130
+ self.lin_query = Linear(in_channels[1], heads * out_channels,
131
+ bias=bias)
132
+ self.lin_value = Linear(in_channels[0], heads * out_channels,
133
+ bias=bias)
132
134
  if edge_dim is not None:
133
135
  self.lin_edge = Linear(edge_dim, heads * out_channels, bias=False)
134
136
  else:
@@ -33,8 +33,8 @@ def onlyFullTest(func: Callable) -> Callable:
33
33
 
34
34
  def is_distributed_test() -> bool:
35
35
  r"""Whether to run the distributed test suite."""
36
- return ((is_full_test() or os.getenv('DIST_TEST', '0') == '1')
37
- and sys.platform == 'linux' and has_package('pyg_lib'))
36
+ return (os.getenv('DIST_TEST', '0') == '1' and sys.platform == 'linux'
37
+ and has_package('pyg_lib'))
38
38
 
39
39
 
40
40
  def onlyDistributedTest(func: Callable) -> Callable: