pyg-nightly 2.7.0.dev20250410__py3-none-any.whl → 2.7.0.dev20250411__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250410.dist-info → pyg_nightly-2.7.0.dev20250411.dist-info}/METADATA +3 -2
- {pyg_nightly-2.7.0.dev20250410.dist-info → pyg_nightly-2.7.0.dev20250411.dist-info}/RECORD +7 -7
- torch_geometric/__init__.py +1 -1
- torch_geometric/nn/conv/transformer_conv.py +5 -3
- torch_geometric/testing/decorators.py +2 -2
- {pyg_nightly-2.7.0.dev20250410.dist-info → pyg_nightly-2.7.0.dev20250411.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250410.dist-info → pyg_nightly-2.7.0.dev20250411.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250410.dist-info → pyg_nightly-2.7.0.dev20250411.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250411
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -13,6 +13,7 @@ Classifier: Programming Language :: Python :: 3.9
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.10
|
14
14
|
Classifier: Programming Language :: Python :: 3.11
|
15
15
|
Classifier: Programming Language :: Python :: 3.12
|
16
|
+
Classifier: Programming Language :: Python :: 3.13
|
16
17
|
Classifier: Programming Language :: Python :: 3 :: Only
|
17
18
|
License-File: LICENSE
|
18
19
|
Requires-Dist: aiohttp
|
@@ -411,7 +412,7 @@ These approaches have been implemented in PyG, and can benefit from the above GN
|
|
411
412
|
|
412
413
|
## Installation
|
413
414
|
|
414
|
-
PyG is available for Python 3.9 to Python 3.
|
415
|
+
PyG is available for Python 3.9 to Python 3.13.
|
415
416
|
|
416
417
|
From **PyG 2.3** onwards, you can install and use PyG **without any external library** required except for PyTorch.
|
417
418
|
For this, simply run
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=5jyXuTotTDAXoFpYa157TW_x88VLzZsbeo_2LDBcf70,1978
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -395,7 +395,7 @@ torch_geometric/nn/conv/spline_conv.py,sha256=RzxHKlBAitCRIBbj2Co7MH6HCFwhlzVD2t
|
|
395
395
|
torch_geometric/nn/conv/ssg_conv.py,sha256=qHjvBwppfazl5qCVsmZz0X1gl9M1fFsVHke9nOArT9w,5131
|
396
396
|
torch_geometric/nn/conv/supergat_conv.py,sha256=ul0qyLBlMFYFDlwvF_vszqcxiX9hA9eeK9p8AUIAs8M,12420
|
397
397
|
torch_geometric/nn/conv/tag_conv.py,sha256=nYcRVQzKqJhe9qmW0QQWHlQielm9AH4gM9AcsiF2ELo,4164
|
398
|
-
torch_geometric/nn/conv/transformer_conv.py,sha256=
|
398
|
+
torch_geometric/nn/conv/transformer_conv.py,sha256=SqtzV9lQwP_Uvmoc428P2ZNdisSWmgu9qq5t8wUV3iQ,10504
|
399
399
|
torch_geometric/nn/conv/wl_conv.py,sha256=je4EM8rVrxG0h9-CWmgXZJnMVhns_VjAVbeqb_tOwos,3140
|
400
400
|
torch_geometric/nn/conv/wl_conv_continuous.py,sha256=nnfd5JVAR2UYz6AQxwCN2a8C6RXDMZVL-WE_wPXKFsU,2777
|
401
401
|
torch_geometric/nn/conv/x_conv.py,sha256=c_qnD-o9-qMa-vaOgEDGb5ZT1NdhS2vrhTQdp-8cYIo,6013
|
@@ -518,7 +518,7 @@ torch_geometric/sampler/utils.py,sha256=RJtasO6Q7Pp3oYEOWrbf2DEYuSfuKZOsF2I7-eJD
|
|
518
518
|
torch_geometric/testing/__init__.py,sha256=0mAGVWRrTBNsGV2YUkCu_FkyQ8JIcrYVw2LsdKgY9ak,1291
|
519
519
|
torch_geometric/testing/asserts.py,sha256=DLC9HnBgFWuTIiQs2OalsQcXGhOVG-e6R99IWhkO32c,4606
|
520
520
|
torch_geometric/testing/data.py,sha256=O1qo8FyNxt6RGf63Ys3eXBfa5RvYydeZLk74szrez3c,2604
|
521
|
-
torch_geometric/testing/decorators.py,sha256=
|
521
|
+
torch_geometric/testing/decorators.py,sha256=BaaQRGgU1r1_p3OTpSLzgUaROq6EB2vojq4VKSzXE6w,8657
|
522
522
|
torch_geometric/testing/distributed.py,sha256=ZZCCXqiQC4-m1ExSjDZhS_a1qPXnHEwhJGTmACxNnVI,2227
|
523
523
|
torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS1m2H7d6OUxs,2158
|
524
524
|
torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
|
@@ -636,7 +636,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
636
636
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
637
637
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
638
638
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
639
|
-
pyg_nightly-2.7.0.
|
640
|
-
pyg_nightly-2.7.0.
|
641
|
-
pyg_nightly-2.7.0.
|
642
|
-
pyg_nightly-2.7.0.
|
639
|
+
pyg_nightly-2.7.0.dev20250411.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
640
|
+
pyg_nightly-2.7.0.dev20250411.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
|
641
|
+
pyg_nightly-2.7.0.dev20250411.dist-info/METADATA,sha256=bF_PoHTK8G7dyiEt49wMpwWWukdKa_xa0XOz7flRH_M,62703
|
642
|
+
pyg_nightly-2.7.0.dev20250411.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250411'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -126,9 +126,11 @@ class TransformerConv(MessagePassing):
|
|
126
126
|
if isinstance(in_channels, int):
|
127
127
|
in_channels = (in_channels, in_channels)
|
128
128
|
|
129
|
-
self.lin_key = Linear(in_channels[0], heads * out_channels)
|
130
|
-
self.lin_query = Linear(in_channels[1], heads * out_channels
|
131
|
-
|
129
|
+
self.lin_key = Linear(in_channels[0], heads * out_channels, bias=bias)
|
130
|
+
self.lin_query = Linear(in_channels[1], heads * out_channels,
|
131
|
+
bias=bias)
|
132
|
+
self.lin_value = Linear(in_channels[0], heads * out_channels,
|
133
|
+
bias=bias)
|
132
134
|
if edge_dim is not None:
|
133
135
|
self.lin_edge = Linear(edge_dim, heads * out_channels, bias=False)
|
134
136
|
else:
|
@@ -33,8 +33,8 @@ def onlyFullTest(func: Callable) -> Callable:
|
|
33
33
|
|
34
34
|
def is_distributed_test() -> bool:
|
35
35
|
r"""Whether to run the distributed test suite."""
|
36
|
-
return (
|
37
|
-
and
|
36
|
+
return (os.getenv('DIST_TEST', '0') == '1' and sys.platform == 'linux'
|
37
|
+
and has_package('pyg_lib'))
|
38
38
|
|
39
39
|
|
40
40
|
def onlyDistributedTest(func: Callable) -> Callable:
|
File without changes
|
{pyg_nightly-2.7.0.dev20250410.dist-info → pyg_nightly-2.7.0.dev20250411.dist-info}/licenses/LICENSE
RENAMED
File without changes
|