pyg-nightly 2.7.0.dev20250305__py3-none-any.whl → 2.7.0.dev20250306__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250305.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250305.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/RECORD +6 -6
- torch_geometric/__init__.py +1 -1
- torch_geometric/nn/models/sgformer.py +3 -1
- {pyg_nightly-2.7.0.dev20250305.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250305.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250305.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250306
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=kP_Bjpvq2DPS6AF3gNyHlfeD4qWNVIFQrsHUpMuLDr8,1978
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -458,7 +458,7 @@ torch_geometric/nn/models/re_net.py,sha256=pz66q5b5BoGDNVQvpEGS2RGoeKvpjkYAv9r3W
|
|
458
458
|
torch_geometric/nn/models/rect.py,sha256=2F3XyyvHTAEuqfJpiNB5M8pSGy738LhPiom5I-SDWqM,2808
|
459
459
|
torch_geometric/nn/models/rev_gnn.py,sha256=1b6wU-6YTuLsWn5p8c5LXQm2KugEAVcEYJKZbWTDvgQ,11796
|
460
460
|
torch_geometric/nn/models/schnet.py,sha256=0aaHrVtxApdvn3RHCGLQJW1MbIb--CSYUrx9O3hDOZM,16656
|
461
|
-
torch_geometric/nn/models/sgformer.py,sha256=
|
461
|
+
torch_geometric/nn/models/sgformer.py,sha256=3NDzkEVRtM1QmeJsXSq7FBhGGchyUvyX1SDPKYg9F70,6875
|
462
462
|
torch_geometric/nn/models/signed_gcn.py,sha256=J40CnedFIqtKI1LhW1ITSEFRbA_XiJZL6lASrKwUEAI,9841
|
463
463
|
torch_geometric/nn/models/tgn.py,sha256=kEGdfLJybkbMT4UMoAh2nCzfX3_nDjfm1cicuPHEwAM,11878
|
464
464
|
torch_geometric/nn/models/visnet.py,sha256=97OFMCsPDEI5BCSi7RhoRcU2CNRp7zck2tEzrltFZj4,43192
|
@@ -633,7 +633,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
633
633
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
634
634
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
635
635
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
636
|
-
pyg_nightly-2.7.0.
|
637
|
-
pyg_nightly-2.7.0.
|
638
|
-
pyg_nightly-2.7.0.
|
639
|
-
pyg_nightly-2.7.0.
|
636
|
+
pyg_nightly-2.7.0.dev20250306.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
637
|
+
pyg_nightly-2.7.0.dev20250306.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
|
638
|
+
pyg_nightly-2.7.0.dev20250306.dist-info/METADATA,sha256=dgxfCImotLlU9VF4RUJG86cqJndisPrw49Qzj5dpTsE,63021
|
639
|
+
pyg_nightly-2.7.0.dev20250306.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250306'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -91,6 +91,8 @@ class SGModule(torch.nn.Module):
|
|
91
91
|
def forward(self, x: Tensor, batch: Tensor):
|
92
92
|
# to dense batch expects sorted batch
|
93
93
|
batch, indices = batch.sort(stable=True)
|
94
|
+
rev_perm = torch.empty_like(indices)
|
95
|
+
rev_perm[indices] = torch.arange(len(indices), device=indices.device)
|
94
96
|
x = x[indices]
|
95
97
|
x, mask = to_dense_batch(x, batch)
|
96
98
|
layer_ = []
|
@@ -114,7 +116,7 @@ class SGModule(torch.nn.Module):
|
|
114
116
|
|
115
117
|
x_mask = x[mask]
|
116
118
|
# reverse the sorting
|
117
|
-
unsorted_x_mask = x_mask[
|
119
|
+
unsorted_x_mask = x_mask[rev_perm]
|
118
120
|
return unsorted_x_mask
|
119
121
|
|
120
122
|
|
File without changes
|
{pyg_nightly-2.7.0.dev20250305.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/licenses/LICENSE
RENAMED
File without changes
|