pyg-nightly 2.7.0.dev20250305__py3-none-any.whl → 2.7.0.dev20250306__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250305
3
+ Version: 2.7.0.dev20250306
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=lAO2W3PUO8aBMI-7GUc6uf6-1meWXKk6WxxRej2zg88,1978
1
+ torch_geometric/__init__.py,sha256=kP_Bjpvq2DPS6AF3gNyHlfeD4qWNVIFQrsHUpMuLDr8,1978
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -458,7 +458,7 @@ torch_geometric/nn/models/re_net.py,sha256=pz66q5b5BoGDNVQvpEGS2RGoeKvpjkYAv9r3W
458
458
  torch_geometric/nn/models/rect.py,sha256=2F3XyyvHTAEuqfJpiNB5M8pSGy738LhPiom5I-SDWqM,2808
459
459
  torch_geometric/nn/models/rev_gnn.py,sha256=1b6wU-6YTuLsWn5p8c5LXQm2KugEAVcEYJKZbWTDvgQ,11796
460
460
  torch_geometric/nn/models/schnet.py,sha256=0aaHrVtxApdvn3RHCGLQJW1MbIb--CSYUrx9O3hDOZM,16656
461
- torch_geometric/nn/models/sgformer.py,sha256=V-F3J-yEdjuhkSsCkQePG_ByNHAu0BcKpknVxjCI3KY,6761
461
+ torch_geometric/nn/models/sgformer.py,sha256=3NDzkEVRtM1QmeJsXSq7FBhGGchyUvyX1SDPKYg9F70,6875
462
462
  torch_geometric/nn/models/signed_gcn.py,sha256=J40CnedFIqtKI1LhW1ITSEFRbA_XiJZL6lASrKwUEAI,9841
463
463
  torch_geometric/nn/models/tgn.py,sha256=kEGdfLJybkbMT4UMoAh2nCzfX3_nDjfm1cicuPHEwAM,11878
464
464
  torch_geometric/nn/models/visnet.py,sha256=97OFMCsPDEI5BCSi7RhoRcU2CNRp7zck2tEzrltFZj4,43192
@@ -633,7 +633,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
633
633
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
634
634
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
635
635
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
636
- pyg_nightly-2.7.0.dev20250305.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
637
- pyg_nightly-2.7.0.dev20250305.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
638
- pyg_nightly-2.7.0.dev20250305.dist-info/METADATA,sha256=CDJ9yzCJHKzCJjFfR_g2b4ao7ln5K0qo8cdEKaerYIY,63021
639
- pyg_nightly-2.7.0.dev20250305.dist-info/RECORD,,
636
+ pyg_nightly-2.7.0.dev20250306.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
637
+ pyg_nightly-2.7.0.dev20250306.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
638
+ pyg_nightly-2.7.0.dev20250306.dist-info/METADATA,sha256=dgxfCImotLlU9VF4RUJG86cqJndisPrw49Qzj5dpTsE,63021
639
+ pyg_nightly-2.7.0.dev20250306.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250305'
34
+ __version__ = '2.7.0.dev20250306'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -91,6 +91,8 @@ class SGModule(torch.nn.Module):
91
91
  def forward(self, x: Tensor, batch: Tensor):
92
92
  # to dense batch expects sorted batch
93
93
  batch, indices = batch.sort(stable=True)
94
+ rev_perm = torch.empty_like(indices)
95
+ rev_perm[indices] = torch.arange(len(indices), device=indices.device)
94
96
  x = x[indices]
95
97
  x, mask = to_dense_batch(x, batch)
96
98
  layer_ = []
@@ -114,7 +116,7 @@ class SGModule(torch.nn.Module):
114
116
 
115
117
  x_mask = x[mask]
116
118
  # reverse the sorting
117
- unsorted_x_mask = x_mask[indices.argsort()]
119
+ unsorted_x_mask = x_mask[rev_perm]
118
120
  return unsorted_x_mask
119
121
 
120
122