pyg-nightly 2.7.0.dev20250304__py3-none-any.whl → 2.7.0.dev20250306__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250304
3
+ Version: 2.7.0.dev20250306
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=xYe0gimmmtBMAoZna0JCHDvfFNOZ3HxQgae8H78U-Cg,1978
1
+ torch_geometric/__init__.py,sha256=kP_Bjpvq2DPS6AF3gNyHlfeD4qWNVIFQrsHUpMuLDr8,1978
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -290,7 +290,7 @@ torch_geometric/loader/temporal_dataloader.py,sha256=AQ2QFeiXKbPp6I8sUeE8H7br-1_
290
290
  torch_geometric/loader/utils.py,sha256=f27mczQ7fEP2HpTsJGJxKS0slPu0j8zTba3jP8ViNck,14901
291
291
  torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
292
292
  torch_geometric/metrics/__init__.py,sha256=3krvDobW6vV5yHTjq2S2pmOXxNfysNG26muq7z48e94,699
293
- torch_geometric/metrics/link_pred.py,sha256=wGQG-Fl6BQYJMLZe_L_iIl4ixj6TWgLkkuHyMMraWBA,30480
293
+ torch_geometric/metrics/link_pred.py,sha256=t2YHbEYc8Jbj_4Sb-Wdk5T5uzsSErpjBpUiSqOSf-NM,30729
294
294
  torch_geometric/nn/__init__.py,sha256=kQHHHUxFDht2ztD-XFQuv98TvC8MdodaFsIjAvltJBw,874
295
295
  torch_geometric/nn/data_parallel.py,sha256=lDAxRi83UNuzAQSj3eu9K2sQheOIU6wqR5elS6oDs90,4764
296
296
  torch_geometric/nn/encoding.py,sha256=QNjwWczYExZ1wRGBmpuqYbn6tB7NC4BU-DEgzjhcZqw,3115
@@ -458,7 +458,7 @@ torch_geometric/nn/models/re_net.py,sha256=pz66q5b5BoGDNVQvpEGS2RGoeKvpjkYAv9r3W
458
458
  torch_geometric/nn/models/rect.py,sha256=2F3XyyvHTAEuqfJpiNB5M8pSGy738LhPiom5I-SDWqM,2808
459
459
  torch_geometric/nn/models/rev_gnn.py,sha256=1b6wU-6YTuLsWn5p8c5LXQm2KugEAVcEYJKZbWTDvgQ,11796
460
460
  torch_geometric/nn/models/schnet.py,sha256=0aaHrVtxApdvn3RHCGLQJW1MbIb--CSYUrx9O3hDOZM,16656
461
- torch_geometric/nn/models/sgformer.py,sha256=V-F3J-yEdjuhkSsCkQePG_ByNHAu0BcKpknVxjCI3KY,6761
461
+ torch_geometric/nn/models/sgformer.py,sha256=3NDzkEVRtM1QmeJsXSq7FBhGGchyUvyX1SDPKYg9F70,6875
462
462
  torch_geometric/nn/models/signed_gcn.py,sha256=J40CnedFIqtKI1LhW1ITSEFRbA_XiJZL6lASrKwUEAI,9841
463
463
  torch_geometric/nn/models/tgn.py,sha256=kEGdfLJybkbMT4UMoAh2nCzfX3_nDjfm1cicuPHEwAM,11878
464
464
  torch_geometric/nn/models/visnet.py,sha256=97OFMCsPDEI5BCSi7RhoRcU2CNRp7zck2tEzrltFZj4,43192
@@ -633,7 +633,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
633
633
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
634
634
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
635
635
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
636
- pyg_nightly-2.7.0.dev20250304.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
637
- pyg_nightly-2.7.0.dev20250304.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
638
- pyg_nightly-2.7.0.dev20250304.dist-info/METADATA,sha256=u-LjJTVVl8r1lbo_4EADaStEERbBn8JGD2vJBzZO734,63021
639
- pyg_nightly-2.7.0.dev20250304.dist-info/RECORD,,
636
+ pyg_nightly-2.7.0.dev20250306.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
637
+ pyg_nightly-2.7.0.dev20250306.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
638
+ pyg_nightly-2.7.0.dev20250306.dist-info/METADATA,sha256=dgxfCImotLlU9VF4RUJG86cqJndisPrw49Qzj5dpTsE,63021
639
+ pyg_nightly-2.7.0.dev20250306.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250304'
34
+ __version__ = '2.7.0.dev20250306'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -221,8 +221,8 @@ class LinkPredMetric(_LinkPredMetric):
221
221
  self.add_state('accum', torch.tensor(0.), dist_reduce_fx='sum')
222
222
  self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
223
223
  else:
224
- self.register_buffer('accum', torch.tensor(0.))
225
- self.register_buffer('total', torch.tensor(0))
224
+ self.register_buffer('accum', torch.tensor(0.), persistent=False)
225
+ self.register_buffer('total', torch.tensor(0), persistent=False)
226
226
 
227
227
  def update(
228
228
  self,
@@ -523,10 +523,11 @@ class LinkPredNDCG(LinkPredMetric):
523
523
  discount = torch.arange(2, k + 2, dtype=dtype).log2()
524
524
 
525
525
  self.discount: Tensor
526
- self.register_buffer('discount', discount)
526
+ self.register_buffer('discount', discount, persistent=False)
527
527
 
528
528
  if not weighted:
529
- self.register_buffer('idcg', cumsum(1.0 / discount))
529
+ self.register_buffer('idcg', cumsum(1.0 / discount),
530
+ persistent=False)
530
531
  else:
531
532
  self.idcg = None
532
533
 
@@ -617,7 +618,7 @@ class LinkPredCoverage(_LinkPredMetric):
617
618
  if WITH_TORCHMETRICS:
618
619
  self.add_state('mask', mask, dist_reduce_fx='max')
619
620
  else:
620
- self.register_buffer('mask', mask)
621
+ self.register_buffer('mask', mask, persistent=False)
621
622
 
622
623
  def update(
623
624
  self,
@@ -673,11 +674,11 @@ class LinkPredDiversity(_LinkPredMetric):
673
674
  self.add_state('accum', torch.tensor(0.), dist_reduce_fx='sum')
674
675
  self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
675
676
  else:
676
- self.register_buffer('accum', torch.tensor(0.))
677
- self.register_buffer('total', torch.tensor(0))
677
+ self.register_buffer('accum', torch.tensor(0.), persistent=False)
678
+ self.register_buffer('total', torch.tensor(0), persistent=False)
678
679
 
679
680
  self.category: Tensor
680
- self.register_buffer('category', category)
681
+ self.register_buffer('category', category, persistent=False)
681
682
 
682
683
  def update(
683
684
  self,
@@ -740,7 +741,7 @@ class LinkPredPersonalization(_LinkPredMetric):
740
741
  self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
741
742
  else:
742
743
  self.preds: List[Tensor] = []
743
- self.register_buffer('total', torch.tensor(0))
744
+ self.register_buffer('total', torch.tensor(0), persistent=False)
744
745
 
745
746
  def update(
746
747
  self,
@@ -829,11 +830,11 @@ class LinkPredAveragePopularity(_LinkPredMetric):
829
830
  self.add_state('accum', torch.tensor(0.), dist_reduce_fx='sum')
830
831
  self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
831
832
  else:
832
- self.register_buffer('accum', torch.tensor(0.))
833
- self.register_buffer('total', torch.tensor(0))
833
+ self.register_buffer('accum', torch.tensor(0.), persistent=False)
834
+ self.register_buffer('total', torch.tensor(0), persistent=False)
834
835
 
835
836
  self.popularity: Tensor
836
- self.register_buffer('popularity', popularity)
837
+ self.register_buffer('popularity', popularity, persistent=False)
837
838
 
838
839
  def update(
839
840
  self,
@@ -91,6 +91,8 @@ class SGModule(torch.nn.Module):
91
91
  def forward(self, x: Tensor, batch: Tensor):
92
92
  # to dense batch expects sorted batch
93
93
  batch, indices = batch.sort(stable=True)
94
+ rev_perm = torch.empty_like(indices)
95
+ rev_perm[indices] = torch.arange(len(indices), device=indices.device)
94
96
  x = x[indices]
95
97
  x, mask = to_dense_batch(x, batch)
96
98
  layer_ = []
@@ -114,7 +116,7 @@ class SGModule(torch.nn.Module):
114
116
 
115
117
  x_mask = x[mask]
116
118
  # reverse the sorting
117
- unsorted_x_mask = x_mask[indices.argsort()]
119
+ unsorted_x_mask = x_mask[rev_perm]
118
120
  return unsorted_x_mask
119
121
 
120
122