pyg-nightly 2.7.0.dev20250304__py3-none-any.whl → 2.7.0.dev20250306__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20250304.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250304.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/RECORD +7 -7
- torch_geometric/__init__.py +1 -1
- torch_geometric/metrics/link_pred.py +13 -12
- torch_geometric/nn/models/sgformer.py +3 -1
- {pyg_nightly-2.7.0.dev20250304.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/WHEEL +0 -0
- {pyg_nightly-2.7.0.dev20250304.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/licenses/LICENSE +0 -0
{pyg_nightly-2.7.0.dev20250304.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250306
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=kP_Bjpvq2DPS6AF3gNyHlfeD4qWNVIFQrsHUpMuLDr8,1978
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -290,7 +290,7 @@ torch_geometric/loader/temporal_dataloader.py,sha256=AQ2QFeiXKbPp6I8sUeE8H7br-1_
|
|
290
290
|
torch_geometric/loader/utils.py,sha256=f27mczQ7fEP2HpTsJGJxKS0slPu0j8zTba3jP8ViNck,14901
|
291
291
|
torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
|
292
292
|
torch_geometric/metrics/__init__.py,sha256=3krvDobW6vV5yHTjq2S2pmOXxNfysNG26muq7z48e94,699
|
293
|
-
torch_geometric/metrics/link_pred.py,sha256=
|
293
|
+
torch_geometric/metrics/link_pred.py,sha256=t2YHbEYc8Jbj_4Sb-Wdk5T5uzsSErpjBpUiSqOSf-NM,30729
|
294
294
|
torch_geometric/nn/__init__.py,sha256=kQHHHUxFDht2ztD-XFQuv98TvC8MdodaFsIjAvltJBw,874
|
295
295
|
torch_geometric/nn/data_parallel.py,sha256=lDAxRi83UNuzAQSj3eu9K2sQheOIU6wqR5elS6oDs90,4764
|
296
296
|
torch_geometric/nn/encoding.py,sha256=QNjwWczYExZ1wRGBmpuqYbn6tB7NC4BU-DEgzjhcZqw,3115
|
@@ -458,7 +458,7 @@ torch_geometric/nn/models/re_net.py,sha256=pz66q5b5BoGDNVQvpEGS2RGoeKvpjkYAv9r3W
|
|
458
458
|
torch_geometric/nn/models/rect.py,sha256=2F3XyyvHTAEuqfJpiNB5M8pSGy738LhPiom5I-SDWqM,2808
|
459
459
|
torch_geometric/nn/models/rev_gnn.py,sha256=1b6wU-6YTuLsWn5p8c5LXQm2KugEAVcEYJKZbWTDvgQ,11796
|
460
460
|
torch_geometric/nn/models/schnet.py,sha256=0aaHrVtxApdvn3RHCGLQJW1MbIb--CSYUrx9O3hDOZM,16656
|
461
|
-
torch_geometric/nn/models/sgformer.py,sha256=
|
461
|
+
torch_geometric/nn/models/sgformer.py,sha256=3NDzkEVRtM1QmeJsXSq7FBhGGchyUvyX1SDPKYg9F70,6875
|
462
462
|
torch_geometric/nn/models/signed_gcn.py,sha256=J40CnedFIqtKI1LhW1ITSEFRbA_XiJZL6lASrKwUEAI,9841
|
463
463
|
torch_geometric/nn/models/tgn.py,sha256=kEGdfLJybkbMT4UMoAh2nCzfX3_nDjfm1cicuPHEwAM,11878
|
464
464
|
torch_geometric/nn/models/visnet.py,sha256=97OFMCsPDEI5BCSi7RhoRcU2CNRp7zck2tEzrltFZj4,43192
|
@@ -633,7 +633,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
633
633
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
634
634
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
635
635
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
636
|
-
pyg_nightly-2.7.0.
|
637
|
-
pyg_nightly-2.7.0.
|
638
|
-
pyg_nightly-2.7.0.
|
639
|
-
pyg_nightly-2.7.0.
|
636
|
+
pyg_nightly-2.7.0.dev20250306.dist-info/licenses/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
|
637
|
+
pyg_nightly-2.7.0.dev20250306.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
|
638
|
+
pyg_nightly-2.7.0.dev20250306.dist-info/METADATA,sha256=dgxfCImotLlU9VF4RUJG86cqJndisPrw49Qzj5dpTsE,63021
|
639
|
+
pyg_nightly-2.7.0.dev20250306.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
|
|
31
31
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
32
32
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
33
33
|
|
34
|
-
__version__ = '2.7.0.
|
34
|
+
__version__ = '2.7.0.dev20250306'
|
35
35
|
|
36
36
|
__all__ = [
|
37
37
|
'Index',
|
@@ -221,8 +221,8 @@ class LinkPredMetric(_LinkPredMetric):
|
|
221
221
|
self.add_state('accum', torch.tensor(0.), dist_reduce_fx='sum')
|
222
222
|
self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
|
223
223
|
else:
|
224
|
-
self.register_buffer('accum', torch.tensor(0.))
|
225
|
-
self.register_buffer('total', torch.tensor(0))
|
224
|
+
self.register_buffer('accum', torch.tensor(0.), persistent=False)
|
225
|
+
self.register_buffer('total', torch.tensor(0), persistent=False)
|
226
226
|
|
227
227
|
def update(
|
228
228
|
self,
|
@@ -523,10 +523,11 @@ class LinkPredNDCG(LinkPredMetric):
|
|
523
523
|
discount = torch.arange(2, k + 2, dtype=dtype).log2()
|
524
524
|
|
525
525
|
self.discount: Tensor
|
526
|
-
self.register_buffer('discount', discount)
|
526
|
+
self.register_buffer('discount', discount, persistent=False)
|
527
527
|
|
528
528
|
if not weighted:
|
529
|
-
self.register_buffer('idcg', cumsum(1.0 / discount)
|
529
|
+
self.register_buffer('idcg', cumsum(1.0 / discount),
|
530
|
+
persistent=False)
|
530
531
|
else:
|
531
532
|
self.idcg = None
|
532
533
|
|
@@ -617,7 +618,7 @@ class LinkPredCoverage(_LinkPredMetric):
|
|
617
618
|
if WITH_TORCHMETRICS:
|
618
619
|
self.add_state('mask', mask, dist_reduce_fx='max')
|
619
620
|
else:
|
620
|
-
self.register_buffer('mask', mask)
|
621
|
+
self.register_buffer('mask', mask, persistent=False)
|
621
622
|
|
622
623
|
def update(
|
623
624
|
self,
|
@@ -673,11 +674,11 @@ class LinkPredDiversity(_LinkPredMetric):
|
|
673
674
|
self.add_state('accum', torch.tensor(0.), dist_reduce_fx='sum')
|
674
675
|
self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
|
675
676
|
else:
|
676
|
-
self.register_buffer('accum', torch.tensor(0.))
|
677
|
-
self.register_buffer('total', torch.tensor(0))
|
677
|
+
self.register_buffer('accum', torch.tensor(0.), persistent=False)
|
678
|
+
self.register_buffer('total', torch.tensor(0), persistent=False)
|
678
679
|
|
679
680
|
self.category: Tensor
|
680
|
-
self.register_buffer('category', category)
|
681
|
+
self.register_buffer('category', category, persistent=False)
|
681
682
|
|
682
683
|
def update(
|
683
684
|
self,
|
@@ -740,7 +741,7 @@ class LinkPredPersonalization(_LinkPredMetric):
|
|
740
741
|
self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
|
741
742
|
else:
|
742
743
|
self.preds: List[Tensor] = []
|
743
|
-
self.register_buffer('total', torch.tensor(0))
|
744
|
+
self.register_buffer('total', torch.tensor(0), persistent=False)
|
744
745
|
|
745
746
|
def update(
|
746
747
|
self,
|
@@ -829,11 +830,11 @@ class LinkPredAveragePopularity(_LinkPredMetric):
|
|
829
830
|
self.add_state('accum', torch.tensor(0.), dist_reduce_fx='sum')
|
830
831
|
self.add_state('total', torch.tensor(0), dist_reduce_fx='sum')
|
831
832
|
else:
|
832
|
-
self.register_buffer('accum', torch.tensor(0.))
|
833
|
-
self.register_buffer('total', torch.tensor(0))
|
833
|
+
self.register_buffer('accum', torch.tensor(0.), persistent=False)
|
834
|
+
self.register_buffer('total', torch.tensor(0), persistent=False)
|
834
835
|
|
835
836
|
self.popularity: Tensor
|
836
|
-
self.register_buffer('popularity', popularity)
|
837
|
+
self.register_buffer('popularity', popularity, persistent=False)
|
837
838
|
|
838
839
|
def update(
|
839
840
|
self,
|
@@ -91,6 +91,8 @@ class SGModule(torch.nn.Module):
|
|
91
91
|
def forward(self, x: Tensor, batch: Tensor):
|
92
92
|
# to dense batch expects sorted batch
|
93
93
|
batch, indices = batch.sort(stable=True)
|
94
|
+
rev_perm = torch.empty_like(indices)
|
95
|
+
rev_perm[indices] = torch.arange(len(indices), device=indices.device)
|
94
96
|
x = x[indices]
|
95
97
|
x, mask = to_dense_batch(x, batch)
|
96
98
|
layer_ = []
|
@@ -114,7 +116,7 @@ class SGModule(torch.nn.Module):
|
|
114
116
|
|
115
117
|
x_mask = x[mask]
|
116
118
|
# reverse the sorting
|
117
|
-
unsorted_x_mask = x_mask[
|
119
|
+
unsorted_x_mask = x_mask[rev_perm]
|
118
120
|
return unsorted_x_mask
|
119
121
|
|
120
122
|
|
File without changes
|
{pyg_nightly-2.7.0.dev20250304.dist-info → pyg_nightly-2.7.0.dev20250306.dist-info}/licenses/LICENSE
RENAMED
File without changes
|