pyg-nightly 2.7.0.dev20250218__py3-none-any.whl → 2.7.0.dev20250219__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250218
3
+ Version: 2.7.0.dev20250219
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=Nr_BRj3gcIVodpmFtDtfRYq9XcwVaPTbw4R6vQGfl_Y,1978
1
+ torch_geometric/__init__.py,sha256=P-W8gnhQltNcKfeLyPOC4diB9zVIHQ5yi0IXFmjYzd4,1978
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -9,7 +9,7 @@ torch_geometric/deprecation.py,sha256=dWRymDIUkUVI2MeEmBG5WF4R6jObZeseSBV9G6FNfj
9
9
  torch_geometric/device.py,sha256=tU5-_lBNVbVHl_kUmWPwiG5mQ1pyapwMF4JkmtNN3MM,1224
10
10
  torch_geometric/edge_index.py,sha256=BsLh5tOZRjjSYDkjqOFAdBuvMaDg7EWaaLELYsUL0Z8,70048
11
11
  torch_geometric/experimental.py,sha256=JbtNNEXjFGI8hZ9raM6-qrZURP6Z5nlDK8QicZUIbz0,4756
12
- torch_geometric/hash_tensor.py,sha256=w4X3vI0vq0EiEn7NUrhr7pRf8p3Tn6PgxTFdjWZ8Hzw,8964
12
+ torch_geometric/hash_tensor.py,sha256=T4fRmS6TD-j7PKa9LMralSbI6naqA4ctW8AnjWsREzw,9615
13
13
  torch_geometric/home.py,sha256=EV54B4Dmiv61GDbkCwtCfWGWJ4eFGwZ8s3KOgGjwYgY,790
14
14
  torch_geometric/index.py,sha256=9ChzWFCwj2slNcVBOgfV-wQn-KscJe_y7502w-Vf76w,24045
15
15
  torch_geometric/inspector.py,sha256=nKi5o4Mn6xsG0Ex1GudTEQt_EqnF9mcMqGtp7Shh9sQ,19336
@@ -633,7 +633,7 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
633
633
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
634
634
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
635
635
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
636
- pyg_nightly-2.7.0.dev20250218.dist-info/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
637
- pyg_nightly-2.7.0.dev20250218.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
638
- pyg_nightly-2.7.0.dev20250218.dist-info/METADATA,sha256=SOvMlvlrvnaA_a_9QjRp6ZYd-33-2itewBSZwWu-Jzw,62999
639
- pyg_nightly-2.7.0.dev20250218.dist-info/RECORD,,
636
+ pyg_nightly-2.7.0.dev20250219.dist-info/LICENSE,sha256=ic-27cMJc1kWoMEYncz3Ya3Ur2Bi3bNLWib2DT763-o,1067
637
+ pyg_nightly-2.7.0.dev20250219.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
638
+ pyg_nightly-2.7.0.dev20250219.dist-info/METADATA,sha256=vvByDyHVHwRDOLKEnsUSA1Dh2obTtvRZvzGks5iU8XA,62999
639
+ pyg_nightly-2.7.0.dev20250219.dist-info/RECORD,,
@@ -31,7 +31,7 @@ from .lazy_loader import LazyLoader
31
31
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
32
32
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
33
33
 
34
- __version__ = '2.7.0.dev20250218'
34
+ __version__ = '2.7.0.dev20250219'
35
35
 
36
36
  __all__ = [
37
37
  'Index',
@@ -197,6 +197,8 @@ class HashTensor(Tensor):
197
197
 
198
198
  return out
199
199
 
200
+ # Methods #################################################################
201
+
200
202
  def as_tensor(self) -> Tensor:
201
203
  r"""Zero-copies the :class:`HashTensor` representation back to a
202
204
  :class:`torch.Tensor` representation.
@@ -205,6 +207,8 @@ class HashTensor(Tensor):
205
207
  return self._value
206
208
  return torch.arange(self.size(0), dtype=self.dtype, device=self.device)
207
209
 
210
+ # PyTorch/Python builtins #################################################
211
+
208
212
  # Prevent auto-wrapping outputs back into the proper subclass type:
209
213
  __torch_function__ = torch._C._disabled_torch_function_impl
210
214
 
@@ -267,7 +271,7 @@ def _to_copy(
267
271
  key = aten._to_copy.default(key, device=device)
268
272
  _map = get_hash_map(key)
269
273
 
270
- return tensor.__class__._from_data(
274
+ return tensor._from_data(
271
275
  _map,
272
276
  value,
273
277
  min_key,
@@ -275,3 +279,19 @@ def _to_copy(
275
279
  num_keys=tensor.size(0),
276
280
  dtype=dtype or tensor.dtype,
277
281
  )
282
+
283
+
284
+ @implements(aten.unsqueeze.default)
285
+ def _unsqueeze(tensor: HashTensor, dim: int) -> HashTensor:
286
+ if dim == 0 or dim == -(tensor.dim() + 1):
287
+ raise IndexError(f"Cannot unsqueeze '{tensor.__class__.__name__}' in "
288
+ f"the first dimension")
289
+
290
+ return tensor._from_data(
291
+ tensor._map,
292
+ aten.unsqueeze.default(tensor.as_tensor(), dim),
293
+ tensor._min_key,
294
+ tensor._max_key,
295
+ num_keys=tensor.size(0),
296
+ dtype=tensor.dtype,
297
+ )