pyg-nightly 2.7.0.dev20250127__py3-none-any.whl → 2.7.0.dev20250129__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {pyg_nightly-2.7.0.dev20250127.dist-info → pyg_nightly-2.7.0.dev20250129.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250127.dist-info → pyg_nightly-2.7.0.dev20250129.dist-info}/RECORD +5 -5
- torch_geometric/__init__.py +1 -1
- torch_geometric/nn/fx.py +7 -7
- {pyg_nightly-2.7.0.dev20250127.dist-info → pyg_nightly-2.7.0.dev20250129.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20250127.dist-info → pyg_nightly-2.7.0.dev20250129.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250129
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=oBN4Oo4-DRHmBhfyZghJdY6U6IWqspMXv75mjbIGVYE,1904
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -293,7 +293,7 @@ torch_geometric/metrics/link_pred.py,sha256=dEsKVrjJ3OYnDbeDxowMNTCQMjKdgj-Xsh0L
|
|
293
293
|
torch_geometric/nn/__init__.py,sha256=RrWRzEoqtR3lsO2lAzYXboLPb3uYEX2z3tLxiBIVWjc,847
|
294
294
|
torch_geometric/nn/data_parallel.py,sha256=lDAxRi83UNuzAQSj3eu9K2sQheOIU6wqR5elS6oDs90,4764
|
295
295
|
torch_geometric/nn/encoding.py,sha256=QNjwWczYExZ1wRGBmpuqYbn6tB7NC4BU-DEgzjhcZqw,3115
|
296
|
-
torch_geometric/nn/fx.py,sha256=
|
296
|
+
torch_geometric/nn/fx.py,sha256=oRfnYiih0FM1MhPNcDYIog0oQ0G0soQJuaz7KeNCOjo,16048
|
297
297
|
torch_geometric/nn/glob.py,sha256=MdHjcUlHmFmTevzwND1_x7dXXJPzIDTBJRGOrGdZ8dQ,1088
|
298
298
|
torch_geometric/nn/inits.py,sha256=_8FqacCLPz5Ft2zB5s6dtKGTKWtfrLyCLLuv1QvyKjk,2457
|
299
299
|
torch_geometric/nn/lr_scheduler.py,sha256=_FWdIgGPDSZCK1TZFWHSP5RfpY83Kyhlz7Ja6YHPQVo,8937
|
@@ -630,6 +630,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
630
630
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
631
631
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
632
632
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
633
|
-
pyg_nightly-2.7.0.
|
634
|
-
pyg_nightly-2.7.0.
|
635
|
-
pyg_nightly-2.7.0.
|
633
|
+
pyg_nightly-2.7.0.dev20250129.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
634
|
+
pyg_nightly-2.7.0.dev20250129.dist-info/METADATA,sha256=0OEHLvLYVzdUQax0Ch1NHfIpy6r_DP_CQKs16UVWlU4,62977
|
635
|
+
pyg_nightly-2.7.0.dev20250129.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20250129'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
torch_geometric/nn/fx.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1
1
|
import copy
|
2
2
|
import warnings
|
3
|
-
from typing import Any, Dict, Optional
|
3
|
+
from typing import Any, Callable, Dict, List, Optional, Type, Union
|
4
4
|
|
5
5
|
import torch
|
6
|
+
from torch import Tensor
|
6
7
|
from torch.nn import Module, ModuleDict, ModuleList, Sequential
|
7
8
|
|
8
9
|
try:
|
@@ -289,7 +290,7 @@ def symbolic_trace(
|
|
289
290
|
# details on the rationale
|
290
291
|
# TODO: Revisit https://github.com/pyg-team/pytorch_geometric/pull/5021
|
291
292
|
@st.compatibility(is_backward_compatible=True)
|
292
|
-
def trace(self, root:
|
293
|
+
def trace(self, root: Union[torch.nn.Module, Callable[..., Any]],
|
293
294
|
concrete_args: Optional[Dict[str, Any]] = None) -> Graph:
|
294
295
|
|
295
296
|
if isinstance(root, torch.nn.Module):
|
@@ -303,17 +304,16 @@ def symbolic_trace(
|
|
303
304
|
self.root = torch.nn.Module()
|
304
305
|
fn = root
|
305
306
|
|
306
|
-
tracer_cls: Optional[
|
307
|
+
tracer_cls: Optional[Type['Tracer']] = getattr(
|
307
308
|
self, '__class__', None)
|
308
309
|
self.graph = Graph(tracer_cls=tracer_cls)
|
309
310
|
|
310
|
-
self.tensor_attrs: Dict[
|
311
|
-
str] = {}
|
311
|
+
self.tensor_attrs: Dict[Union[Tensor, st.ScriptObject], str] = {}
|
312
312
|
|
313
313
|
def collect_tensor_attrs(m: torch.nn.Module,
|
314
|
-
prefix_atoms:
|
314
|
+
prefix_atoms: List[str]):
|
315
315
|
for k, v in m.__dict__.items():
|
316
|
-
if isinstance(v, (
|
316
|
+
if isinstance(v, (Tensor, st.ScriptObject)):
|
317
317
|
self.tensor_attrs[v] = '.'.join(prefix_atoms + [k])
|
318
318
|
for k, v in m.named_children():
|
319
319
|
collect_tensor_attrs(v, prefix_atoms + [k])
|
File without changes
|