pyg-nightly 2.7.0.dev20250127__py3-none-any.whl → 2.7.0.dev20250129__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250127
3
+ Version: 2.7.0.dev20250129
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=33YzYc4DKCefQy8O4OWQApdZsB69GgHC1guRY_Uq_Kw,1904
1
+ torch_geometric/__init__.py,sha256=oBN4Oo4-DRHmBhfyZghJdY6U6IWqspMXv75mjbIGVYE,1904
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -293,7 +293,7 @@ torch_geometric/metrics/link_pred.py,sha256=dEsKVrjJ3OYnDbeDxowMNTCQMjKdgj-Xsh0L
293
293
  torch_geometric/nn/__init__.py,sha256=RrWRzEoqtR3lsO2lAzYXboLPb3uYEX2z3tLxiBIVWjc,847
294
294
  torch_geometric/nn/data_parallel.py,sha256=lDAxRi83UNuzAQSj3eu9K2sQheOIU6wqR5elS6oDs90,4764
295
295
  torch_geometric/nn/encoding.py,sha256=QNjwWczYExZ1wRGBmpuqYbn6tB7NC4BU-DEgzjhcZqw,3115
296
- torch_geometric/nn/fx.py,sha256=60LFgGJdJNdCbj0L4lY9q8ABooCE07kFXwNWmhJg-xc,16057
296
+ torch_geometric/nn/fx.py,sha256=oRfnYiih0FM1MhPNcDYIog0oQ0G0soQJuaz7KeNCOjo,16048
297
297
  torch_geometric/nn/glob.py,sha256=MdHjcUlHmFmTevzwND1_x7dXXJPzIDTBJRGOrGdZ8dQ,1088
298
298
  torch_geometric/nn/inits.py,sha256=_8FqacCLPz5Ft2zB5s6dtKGTKWtfrLyCLLuv1QvyKjk,2457
299
299
  torch_geometric/nn/lr_scheduler.py,sha256=_FWdIgGPDSZCK1TZFWHSP5RfpY83Kyhlz7Ja6YHPQVo,8937
@@ -630,6 +630,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
630
630
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
631
631
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
632
632
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
633
- pyg_nightly-2.7.0.dev20250127.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
634
- pyg_nightly-2.7.0.dev20250127.dist-info/METADATA,sha256=gbcevFiekNYuVfwk6Uwf7JfFhijKl4Fj1M9te4dwRuI,62977
635
- pyg_nightly-2.7.0.dev20250127.dist-info/RECORD,,
633
+ pyg_nightly-2.7.0.dev20250129.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
634
+ pyg_nightly-2.7.0.dev20250129.dist-info/METADATA,sha256=0OEHLvLYVzdUQax0Ch1NHfIpy6r_DP_CQKs16UVWlU4,62977
635
+ pyg_nightly-2.7.0.dev20250129.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20250127'
33
+ __version__ = '2.7.0.dev20250129'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
torch_geometric/nn/fx.py CHANGED
@@ -1,8 +1,9 @@
1
1
  import copy
2
2
  import warnings
3
- from typing import Any, Dict, Optional
3
+ from typing import Any, Callable, Dict, List, Optional, Type, Union
4
4
 
5
5
  import torch
6
+ from torch import Tensor
6
7
  from torch.nn import Module, ModuleDict, ModuleList, Sequential
7
8
 
8
9
  try:
@@ -289,7 +290,7 @@ def symbolic_trace(
289
290
  # details on the rationale
290
291
  # TODO: Revisit https://github.com/pyg-team/pytorch_geometric/pull/5021
291
292
  @st.compatibility(is_backward_compatible=True)
292
- def trace(self, root: st.Union[torch.nn.Module, st.Callable[..., Any]],
293
+ def trace(self, root: Union[torch.nn.Module, Callable[..., Any]],
293
294
  concrete_args: Optional[Dict[str, Any]] = None) -> Graph:
294
295
 
295
296
  if isinstance(root, torch.nn.Module):
@@ -303,17 +304,16 @@ def symbolic_trace(
303
304
  self.root = torch.nn.Module()
304
305
  fn = root
305
306
 
306
- tracer_cls: Optional[st.Type['Tracer']] = getattr(
307
+ tracer_cls: Optional[Type['Tracer']] = getattr(
307
308
  self, '__class__', None)
308
309
  self.graph = Graph(tracer_cls=tracer_cls)
309
310
 
310
- self.tensor_attrs: Dict[st.Union[torch.Tensor, st.ScriptObject],
311
- str] = {}
311
+ self.tensor_attrs: Dict[Union[Tensor, st.ScriptObject], str] = {}
312
312
 
313
313
  def collect_tensor_attrs(m: torch.nn.Module,
314
- prefix_atoms: st.List[str]):
314
+ prefix_atoms: List[str]):
315
315
  for k, v in m.__dict__.items():
316
- if isinstance(v, (torch.Tensor, st.ScriptObject)):
316
+ if isinstance(v, (Tensor, st.ScriptObject)):
317
317
  self.tensor_attrs[v] = '.'.join(prefix_atoms + [k])
318
318
  for k, v in m.named_children():
319
319
  collect_tensor_attrs(v, prefix_atoms + [k])