pyg-nightly 2.7.0.dev20250122__py3-none-any.whl → 2.7.0.dev20250123__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {pyg_nightly-2.7.0.dev20250122.dist-info → pyg_nightly-2.7.0.dev20250123.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250122.dist-info → pyg_nightly-2.7.0.dev20250123.dist-info}/RECORD +6 -6
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/__init__.py +2 -1
- torch_geometric/datasets/web_qsp_dataset.py +51 -5
- {pyg_nightly-2.7.0.dev20250122.dist-info → pyg_nightly-2.7.0.dev20250123.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20250122.dist-info → pyg_nightly-2.7.0.dev20250123.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250123
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=COnoNBh7iieWJG1zAETk9abRRlpAtF3JVai-ScKagu4,1904
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -54,7 +54,7 @@ torch_geometric/data/temporal.py,sha256=WOJ6gFrTLikaLhUvotyUF5ql14FkE5Ox3hNkdSp6
|
|
54
54
|
torch_geometric/data/view.py,sha256=XjkVSc-UWZFCT4DlXLShZtO8duhFQkS9gq88zZXANsk,1089
|
55
55
|
torch_geometric/data/lightning/__init__.py,sha256=w3En1tJfy3kSqe1MycpOyZpHFO3fxBCgNCUOznPA3YU,178
|
56
56
|
torch_geometric/data/lightning/datamodule.py,sha256=Bn9iaIfE4NWDDWWMqCvBeZ4bIW1Silx_Ol5CPJCliaQ,29242
|
57
|
-
torch_geometric/datasets/__init__.py,sha256=
|
57
|
+
torch_geometric/datasets/__init__.py,sha256=eqVmuffZnc-O7KBdXO98SNVwSGehT5uy2LAC86MxGO4,6107
|
58
58
|
torch_geometric/datasets/actor.py,sha256=oUxgJIX8bi5hJr1etWNYIFyVQNDDXi1nyVpHGGMEAGQ,4304
|
59
59
|
torch_geometric/datasets/airfrans.py,sha256=212gYsk7PvF-qcmvM2YXaOBhFrS79evAGg_sPHXih4w,5439
|
60
60
|
torch_geometric/datasets/airports.py,sha256=b3gkv3gY2JkUpmGiz36Z-g7EcnSfU8lBG1YsCOWdJ6k,3758
|
@@ -153,7 +153,7 @@ torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDC
|
|
153
153
|
torch_geometric/datasets/tu_dataset.py,sha256=14OSaXBgVwT1dX2h1wZ3xVIwoo0GQBEfR3yWh6Q0VF0,7847
|
154
154
|
torch_geometric/datasets/twitch.py,sha256=qfEerf-Uaojx2ZvegENowdG4E7RoUT_HUO9xtULadvo,3658
|
155
155
|
torch_geometric/datasets/upfd.py,sha256=crqO8uQNz1wC1JOn4prSs8iOGv9LuLK3dZf_KUV9tUE,7010
|
156
|
-
torch_geometric/datasets/web_qsp_dataset.py,sha256=
|
156
|
+
torch_geometric/datasets/web_qsp_dataset.py,sha256=7ygTK2LGRvJtnlyM3rl-9GV3VpRQWQY_ettKoJRnXz4,11120
|
157
157
|
torch_geometric/datasets/webkb.py,sha256=beC1kWeW7cIjYwWyaINQSk-3lmVR85Lus7cKZniHp8Y,4879
|
158
158
|
torch_geometric/datasets/wikics.py,sha256=iTzYif1WvbMXnMdhPMfvrkVaAbnM009WiB_f_JWZqhU,3879
|
159
159
|
torch_geometric/datasets/wikidata.py,sha256=9mYShF_HlpTmcdLpiaP_tYJ9eQtUOu5vRPvohN6RXqI,4979
|
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
629
629
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
630
630
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
631
631
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
632
|
-
pyg_nightly-2.7.0.
|
633
|
-
pyg_nightly-2.7.0.
|
634
|
-
pyg_nightly-2.7.0.
|
632
|
+
pyg_nightly-2.7.0.dev20250123.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
633
|
+
pyg_nightly-2.7.0.dev20250123.dist-info/METADATA,sha256=m3jsTFqYGE7WBmv8A7yIrZKsBoZo0cpn72KNunMlT2Y,62977
|
634
|
+
pyg_nightly-2.7.0.dev20250123.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20250123'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
@@ -76,7 +76,7 @@ from .wikidata import Wikidata5M
|
|
76
76
|
from .myket import MyketDataset
|
77
77
|
from .brca_tgca import BrcaTcga
|
78
78
|
from .neurograph import NeuroGraphDataset
|
79
|
-
from .web_qsp_dataset import WebQSPDataset
|
79
|
+
from .web_qsp_dataset import WebQSPDataset, CWQDataset
|
80
80
|
from .git_mol_dataset import GitMolDataset
|
81
81
|
from .molecule_gpt_dataset import MoleculeGPTDataset
|
82
82
|
from .tag_dataset import TAGDataset
|
@@ -193,6 +193,7 @@ homo_datasets = [
|
|
193
193
|
'BrcaTcga',
|
194
194
|
'NeuroGraphDataset',
|
195
195
|
'WebQSPDataset',
|
196
|
+
'CWQDataset',
|
196
197
|
'GitMolDataset',
|
197
198
|
'MoleculeGPTDataset',
|
198
199
|
'TAGDataset',
|
@@ -117,12 +117,13 @@ def retrieval_via_pcst(
|
|
117
117
|
return data, desc
|
118
118
|
|
119
119
|
|
120
|
-
class
|
121
|
-
r"""
|
122
|
-
|
123
|
-
<https://
|
120
|
+
class KGQABaseDataset(InMemoryDataset):
|
121
|
+
r"""Base class for the 2 KGQA datasets used in `"Reasoning on Graphs:
|
122
|
+
Faithful and Interpretable Large Language Model Reasoning"
|
123
|
+
<https://arxiv.org/pdf/2310.01061>`_ paper.
|
124
124
|
|
125
125
|
Args:
|
126
|
+
dataset_name (str): HuggingFace `dataset` name.
|
126
127
|
root (str): Root directory where the dataset should be saved.
|
127
128
|
split (str, optional): If :obj:`"train"`, loads the training dataset.
|
128
129
|
If :obj:`"val"`, loads the validation dataset.
|
@@ -134,11 +135,14 @@ class WebQSPDataset(InMemoryDataset):
|
|
134
135
|
"""
|
135
136
|
def __init__(
|
136
137
|
self,
|
138
|
+
dataset_name: str,
|
137
139
|
root: str,
|
138
140
|
split: str = "train",
|
139
141
|
force_reload: bool = False,
|
140
142
|
use_pcst: bool = True,
|
143
|
+
use_cwq: bool = True,
|
141
144
|
) -> None:
|
145
|
+
self.dataset_name = dataset_name
|
142
146
|
self.use_pcst = use_pcst
|
143
147
|
super().__init__(root, force_reload=force_reload)
|
144
148
|
|
@@ -156,7 +160,7 @@ class WebQSPDataset(InMemoryDataset):
|
|
156
160
|
import datasets
|
157
161
|
import pandas as pd
|
158
162
|
|
159
|
-
datasets = datasets.load_dataset(
|
163
|
+
datasets = datasets.load_dataset(self.dataset_name)
|
160
164
|
|
161
165
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
162
166
|
model_name = 'sentence-transformers/all-roberta-large-v1'
|
@@ -244,3 +248,45 @@ class WebQSPDataset(InMemoryDataset):
|
|
244
248
|
data_list.append(data)
|
245
249
|
|
246
250
|
self.save(data_list, path)
|
251
|
+
|
252
|
+
|
253
|
+
class WebQSPDataset(KGQABaseDataset):
|
254
|
+
r"""The WebQuestionsSP dataset of the `"The Value of Semantic Parse
|
255
|
+
Labeling for Knowledge Base Question Answering"
|
256
|
+
<https://aclanthology.org/P16-2033/>`_ paper.
|
257
|
+
|
258
|
+
Args:
|
259
|
+
root (str): Root directory where the dataset should be saved.
|
260
|
+
split (str, optional): If :obj:`"train"`, loads the training dataset.
|
261
|
+
If :obj:`"val"`, loads the validation dataset.
|
262
|
+
If :obj:`"test"`, loads the test dataset. (default: :obj:`"train"`)
|
263
|
+
force_reload (bool, optional): Whether to re-process the dataset.
|
264
|
+
(default: :obj:`False`)
|
265
|
+
use_pcst (bool, optional): Whether to preprocess the dataset's graph
|
266
|
+
with PCST or return the full graphs. (default: :obj:`True`)
|
267
|
+
"""
|
268
|
+
def __init__(self, root: str, split: str = "train",
|
269
|
+
force_reload: bool = False, use_pcst: bool = True) -> None:
|
270
|
+
dataset_name = 'rmanluo/RoG-webqsp'
|
271
|
+
super().__init__(dataset_name, root, split, force_reload, use_pcst)
|
272
|
+
|
273
|
+
|
274
|
+
class CWQDataset(KGQABaseDataset):
|
275
|
+
r"""The ComplexWebQuestions (CWQ) dataset of the `"The Web as a
|
276
|
+
Knowledge-base forAnswering Complex Questions"
|
277
|
+
<https://arxiv.org/pdf/1803.06643>`_ paper.
|
278
|
+
|
279
|
+
Args:
|
280
|
+
root (str): Root directory where the dataset should be saved.
|
281
|
+
split (str, optional): If :obj:`"train"`, loads the training dataset.
|
282
|
+
If :obj:`"val"`, loads the validation dataset.
|
283
|
+
If :obj:`"test"`, loads the test dataset. (default: :obj:`"train"`)
|
284
|
+
force_reload (bool, optional): Whether to re-process the dataset.
|
285
|
+
(default: :obj:`False`)
|
286
|
+
use_pcst (bool, optional): Whether to preprocess the dataset's graph
|
287
|
+
with PCST or return the full graphs. (default: :obj:`True`)
|
288
|
+
"""
|
289
|
+
def __init__(self, root: str, split: str = "train",
|
290
|
+
force_reload: bool = False, use_pcst: bool = True) -> None:
|
291
|
+
dataset_name = 'rmanluo/RoG-cwq'
|
292
|
+
super().__init__(dataset_name, root, split, force_reload, use_pcst)
|
File without changes
|