pyg-nightly 2.7.0.dev20250121__py3-none-any.whl → 2.7.0.dev20250123__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250121
3
+ Version: 2.7.0.dev20250123
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=-kv-ITEXzHEPt-eigvlUYC2WAQeVV7-HQQiT1AYrz5A,1904
1
+ torch_geometric/__init__.py,sha256=COnoNBh7iieWJG1zAETk9abRRlpAtF3JVai-ScKagu4,1904
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -54,7 +54,7 @@ torch_geometric/data/temporal.py,sha256=WOJ6gFrTLikaLhUvotyUF5ql14FkE5Ox3hNkdSp6
54
54
  torch_geometric/data/view.py,sha256=XjkVSc-UWZFCT4DlXLShZtO8duhFQkS9gq88zZXANsk,1089
55
55
  torch_geometric/data/lightning/__init__.py,sha256=w3En1tJfy3kSqe1MycpOyZpHFO3fxBCgNCUOznPA3YU,178
56
56
  torch_geometric/data/lightning/datamodule.py,sha256=Bn9iaIfE4NWDDWWMqCvBeZ4bIW1Silx_Ol5CPJCliaQ,29242
57
- torch_geometric/datasets/__init__.py,sha256=HYgogFHWZabd5yLfc1E4eHy9QsY6ILFRPTgfOorNwWQ,6077
57
+ torch_geometric/datasets/__init__.py,sha256=eqVmuffZnc-O7KBdXO98SNVwSGehT5uy2LAC86MxGO4,6107
58
58
  torch_geometric/datasets/actor.py,sha256=oUxgJIX8bi5hJr1etWNYIFyVQNDDXi1nyVpHGGMEAGQ,4304
59
59
  torch_geometric/datasets/airfrans.py,sha256=212gYsk7PvF-qcmvM2YXaOBhFrS79evAGg_sPHXih4w,5439
60
60
  torch_geometric/datasets/airports.py,sha256=b3gkv3gY2JkUpmGiz36Z-g7EcnSfU8lBG1YsCOWdJ6k,3758
@@ -153,7 +153,7 @@ torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDC
153
153
  torch_geometric/datasets/tu_dataset.py,sha256=14OSaXBgVwT1dX2h1wZ3xVIwoo0GQBEfR3yWh6Q0VF0,7847
154
154
  torch_geometric/datasets/twitch.py,sha256=qfEerf-Uaojx2ZvegENowdG4E7RoUT_HUO9xtULadvo,3658
155
155
  torch_geometric/datasets/upfd.py,sha256=crqO8uQNz1wC1JOn4prSs8iOGv9LuLK3dZf_KUV9tUE,7010
156
- torch_geometric/datasets/web_qsp_dataset.py,sha256=tCVMFRT1FqlukkrdcN-qS2jYWvVYocy3-_ZeCpWwIEk,8905
156
+ torch_geometric/datasets/web_qsp_dataset.py,sha256=7ygTK2LGRvJtnlyM3rl-9GV3VpRQWQY_ettKoJRnXz4,11120
157
157
  torch_geometric/datasets/webkb.py,sha256=beC1kWeW7cIjYwWyaINQSk-3lmVR85Lus7cKZniHp8Y,4879
158
158
  torch_geometric/datasets/wikics.py,sha256=iTzYif1WvbMXnMdhPMfvrkVaAbnM009WiB_f_JWZqhU,3879
159
159
  torch_geometric/datasets/wikidata.py,sha256=9mYShF_HlpTmcdLpiaP_tYJ9eQtUOu5vRPvohN6RXqI,4979
@@ -288,7 +288,7 @@ torch_geometric/loader/temporal_dataloader.py,sha256=AQ2QFeiXKbPp6I8sUeE8H7br-1_
288
288
  torch_geometric/loader/utils.py,sha256=f27mczQ7fEP2HpTsJGJxKS0slPu0j8zTba3jP8ViNck,14901
289
289
  torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
290
290
  torch_geometric/metrics/__init__.py,sha256=Ck-rqQOGoKYRNSI95zlsTtQKVN4ZJGDaYYTMeSOjvvU,435
291
- torch_geometric/metrics/link_pred.py,sha256=C4Qb-utnukjmxi3xiJBLzXfJeTu9lKFufJwqMy840yQ,18567
291
+ torch_geometric/metrics/link_pred.py,sha256=dEsKVrjJ3OYnDbeDxowMNTCQMjKdgj-Xsh0L2VY5hLo,18563
292
292
  torch_geometric/nn/__init__.py,sha256=RrWRzEoqtR3lsO2lAzYXboLPb3uYEX2z3tLxiBIVWjc,847
293
293
  torch_geometric/nn/data_parallel.py,sha256=lDAxRi83UNuzAQSj3eu9K2sQheOIU6wqR5elS6oDs90,4764
294
294
  torch_geometric/nn/encoding.py,sha256=QNjwWczYExZ1wRGBmpuqYbn6tB7NC4BU-DEgzjhcZqw,3115
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
629
629
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
630
630
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
631
631
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
632
- pyg_nightly-2.7.0.dev20250121.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
- pyg_nightly-2.7.0.dev20250121.dist-info/METADATA,sha256=XTk2cpMw-2IWyA-XzKFYB6WHb5m7XikPMmoDAP8bW9k,62977
634
- pyg_nightly-2.7.0.dev20250121.dist-info/RECORD,,
632
+ pyg_nightly-2.7.0.dev20250123.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
+ pyg_nightly-2.7.0.dev20250123.dist-info/METADATA,sha256=m3jsTFqYGE7WBmv8A7yIrZKsBoZo0cpn72KNunMlT2Y,62977
634
+ pyg_nightly-2.7.0.dev20250123.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20250121'
33
+ __version__ = '2.7.0.dev20250123'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -76,7 +76,7 @@ from .wikidata import Wikidata5M
76
76
  from .myket import MyketDataset
77
77
  from .brca_tgca import BrcaTcga
78
78
  from .neurograph import NeuroGraphDataset
79
- from .web_qsp_dataset import WebQSPDataset
79
+ from .web_qsp_dataset import WebQSPDataset, CWQDataset
80
80
  from .git_mol_dataset import GitMolDataset
81
81
  from .molecule_gpt_dataset import MoleculeGPTDataset
82
82
  from .tag_dataset import TAGDataset
@@ -193,6 +193,7 @@ homo_datasets = [
193
193
  'BrcaTcga',
194
194
  'NeuroGraphDataset',
195
195
  'WebQSPDataset',
196
+ 'CWQDataset',
196
197
  'GitMolDataset',
197
198
  'MoleculeGPTDataset',
198
199
  'TAGDataset',
@@ -117,12 +117,13 @@ def retrieval_via_pcst(
117
117
  return data, desc
118
118
 
119
119
 
120
- class WebQSPDataset(InMemoryDataset):
121
- r"""The WebQuestionsSP dataset of the `"The Value of Semantic Parse
122
- Labeling for Knowledge Base Question Answering"
123
- <https://aclanthology.org/P16-2033/>`_ paper.
120
+ class KGQABaseDataset(InMemoryDataset):
121
+ r"""Base class for the 2 KGQA datasets used in `"Reasoning on Graphs:
122
+ Faithful and Interpretable Large Language Model Reasoning"
123
+ <https://arxiv.org/pdf/2310.01061>`_ paper.
124
124
 
125
125
  Args:
126
+ dataset_name (str): HuggingFace `dataset` name.
126
127
  root (str): Root directory where the dataset should be saved.
127
128
  split (str, optional): If :obj:`"train"`, loads the training dataset.
128
129
  If :obj:`"val"`, loads the validation dataset.
@@ -134,11 +135,14 @@ class WebQSPDataset(InMemoryDataset):
134
135
  """
135
136
  def __init__(
136
137
  self,
138
+ dataset_name: str,
137
139
  root: str,
138
140
  split: str = "train",
139
141
  force_reload: bool = False,
140
142
  use_pcst: bool = True,
143
+ use_cwq: bool = True,
141
144
  ) -> None:
145
+ self.dataset_name = dataset_name
142
146
  self.use_pcst = use_pcst
143
147
  super().__init__(root, force_reload=force_reload)
144
148
 
@@ -156,7 +160,7 @@ class WebQSPDataset(InMemoryDataset):
156
160
  import datasets
157
161
  import pandas as pd
158
162
 
159
- datasets = datasets.load_dataset('rmanluo/RoG-webqsp')
163
+ datasets = datasets.load_dataset(self.dataset_name)
160
164
 
161
165
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
162
166
  model_name = 'sentence-transformers/all-roberta-large-v1'
@@ -244,3 +248,45 @@ class WebQSPDataset(InMemoryDataset):
244
248
  data_list.append(data)
245
249
 
246
250
  self.save(data_list, path)
251
+
252
+
253
+ class WebQSPDataset(KGQABaseDataset):
254
+ r"""The WebQuestionsSP dataset of the `"The Value of Semantic Parse
255
+ Labeling for Knowledge Base Question Answering"
256
+ <https://aclanthology.org/P16-2033/>`_ paper.
257
+
258
+ Args:
259
+ root (str): Root directory where the dataset should be saved.
260
+ split (str, optional): If :obj:`"train"`, loads the training dataset.
261
+ If :obj:`"val"`, loads the validation dataset.
262
+ If :obj:`"test"`, loads the test dataset. (default: :obj:`"train"`)
263
+ force_reload (bool, optional): Whether to re-process the dataset.
264
+ (default: :obj:`False`)
265
+ use_pcst (bool, optional): Whether to preprocess the dataset's graph
266
+ with PCST or return the full graphs. (default: :obj:`True`)
267
+ """
268
+ def __init__(self, root: str, split: str = "train",
269
+ force_reload: bool = False, use_pcst: bool = True) -> None:
270
+ dataset_name = 'rmanluo/RoG-webqsp'
271
+ super().__init__(dataset_name, root, split, force_reload, use_pcst)
272
+
273
+
274
+ class CWQDataset(KGQABaseDataset):
275
+ r"""The ComplexWebQuestions (CWQ) dataset of the `"The Web as a
276
+ Knowledge-base forAnswering Complex Questions"
277
+ <https://arxiv.org/pdf/1803.06643>`_ paper.
278
+
279
+ Args:
280
+ root (str): Root directory where the dataset should be saved.
281
+ split (str, optional): If :obj:`"train"`, loads the training dataset.
282
+ If :obj:`"val"`, loads the validation dataset.
283
+ If :obj:`"test"`, loads the test dataset. (default: :obj:`"train"`)
284
+ force_reload (bool, optional): Whether to re-process the dataset.
285
+ (default: :obj:`False`)
286
+ use_pcst (bool, optional): Whether to preprocess the dataset's graph
287
+ with PCST or return the full graphs. (default: :obj:`True`)
288
+ """
289
+ def __init__(self, root: str, split: str = "train",
290
+ force_reload: bool = False, use_pcst: bool = True) -> None:
291
+ dataset_name = 'rmanluo/RoG-cwq'
292
+ super().__init__(dataset_name, root, split, force_reload, use_pcst)
@@ -492,7 +492,7 @@ class LinkPredNDCG(LinkPredMetric):
492
492
  self.discount,
493
493
  self.discount.new_full((1, ), fill_value=float('inf')),
494
494
  ])
495
- discount = discount[pos.clamp(max=self.k + 1)]
495
+ discount = discount[pos.clamp(max=self.k)]
496
496
 
497
497
  idcg = scatter( # Apply discount and aggregate:
498
498
  data.edge_label_weight / discount,