pyg-nightly 2.7.0.dev20250120__py3-none-any.whl → 2.7.0.dev20250122__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250120
3
+ Version: 2.7.0.dev20250122
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=jrg5LNbC0DH4zTFDIXy-xehMH1y8WvDTmO-a47_hlGY,1904
1
+ torch_geometric/__init__.py,sha256=6uAYPnzs2ioPbhZa8-9MVViVgklvCD1v_1Vc8B9t3zI,1904
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -287,8 +287,8 @@ torch_geometric/loader/shadow.py,sha256=_hCspYf9SlJYX0lqEjxFec9e9t1iMScNThOoWR1w
287
287
  torch_geometric/loader/temporal_dataloader.py,sha256=AQ2QFeiXKbPp6I8sUeE8H7br-1_yndivXt7Z6_w62zI,2248
288
288
  torch_geometric/loader/utils.py,sha256=f27mczQ7fEP2HpTsJGJxKS0slPu0j8zTba3jP8ViNck,14901
289
289
  torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
290
- torch_geometric/metrics/__init__.py,sha256=xHDTWEG4kdv9xb5pGPlRfQjC5P-ZGbhJ0xDe3YNq3ss,393
291
- torch_geometric/metrics/link_pred.py,sha256=8H74eS28AcGtOUB0g8_xUUp8IX-zmlIFuBURp7Dx0No,18269
290
+ torch_geometric/metrics/__init__.py,sha256=Ck-rqQOGoKYRNSI95zlsTtQKVN4ZJGDaYYTMeSOjvvU,435
291
+ torch_geometric/metrics/link_pred.py,sha256=dEsKVrjJ3OYnDbeDxowMNTCQMjKdgj-Xsh0L2VY5hLo,18563
292
292
  torch_geometric/nn/__init__.py,sha256=RrWRzEoqtR3lsO2lAzYXboLPb3uYEX2z3tLxiBIVWjc,847
293
293
  torch_geometric/nn/data_parallel.py,sha256=lDAxRi83UNuzAQSj3eu9K2sQheOIU6wqR5elS6oDs90,4764
294
294
  torch_geometric/nn/encoding.py,sha256=QNjwWczYExZ1wRGBmpuqYbn6tB7NC4BU-DEgzjhcZqw,3115
@@ -459,7 +459,7 @@ torch_geometric/nn/models/signed_gcn.py,sha256=J40CnedFIqtKI1LhW1ITSEFRbA_XiJZL6
459
459
  torch_geometric/nn/models/tgn.py,sha256=kEGdfLJybkbMT4UMoAh2nCzfX3_nDjfm1cicuPHEwAM,11878
460
460
  torch_geometric/nn/models/visnet.py,sha256=97OFMCsPDEI5BCSi7RhoRcU2CNRp7zck2tEzrltFZj4,43192
461
461
  torch_geometric/nn/nlp/__init__.py,sha256=q6CPUiJHcc9bXw90lyj-ID4F3kfW8uPM-SOxW9uCMHs,213
462
- torch_geometric/nn/nlp/llm.py,sha256=vcFvqW-veEfVZDLSHKFKXY-1k0TbiOzmf3LZIwIA0zM,12146
462
+ torch_geometric/nn/nlp/llm.py,sha256=j03tyCO1ADgrzGhLqYOUcsy0haGbV4dmT9bdwEnESPE,12181
463
463
  torch_geometric/nn/nlp/sentence_transformer.py,sha256=q5M7SGtrUzoSiNhKCGFb7JatWiukdhNF6zdq2yiqxwE,4475
464
464
  torch_geometric/nn/nlp/vision_transformer.py,sha256=diVBefjIynzYs8WBlcpTeSVnw1PUecHY--B9Yd-W2hA,863
465
465
  torch_geometric/nn/norm/__init__.py,sha256=u2qIDrkbeuObGVXSAIftAlvSd6ouGTtxznCfD-59UiA,669
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
629
629
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
630
630
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
631
631
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
632
- pyg_nightly-2.7.0.dev20250120.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
- pyg_nightly-2.7.0.dev20250120.dist-info/METADATA,sha256=v8PrbeT1NhlxaPY2XluG7JhiGCSKagoAogZ5NCC_6B8,62977
634
- pyg_nightly-2.7.0.dev20250120.dist-info/RECORD,,
632
+ pyg_nightly-2.7.0.dev20250122.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
+ pyg_nightly-2.7.0.dev20250122.dist-info/METADATA,sha256=JOKsGMFgqMMCa0rxpsjhLPD5bqoJ1lXrzBALYWKHWYk,62977
634
+ pyg_nightly-2.7.0.dev20250122.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20250120'
33
+ __version__ = '2.7.0.dev20250122'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -1,6 +1,7 @@
1
1
  # flake8: noqa
2
2
 
3
3
  from .link_pred import (
4
+ LinkPredMetric,
4
5
  LinkPredMetricCollection,
5
6
  LinkPredPrecision,
6
7
  LinkPredRecall,
@@ -11,6 +12,7 @@ from .link_pred import (
11
12
  )
12
13
 
13
14
  link_pred_metrics = [
15
+ 'LinkPredMetric',
14
16
  'LinkPredMetricCollection',
15
17
  'LinkPredPrecision',
16
18
  'LinkPredRecall',
@@ -30,6 +30,14 @@ class LinkPredMetricData:
30
30
  if hasattr(self, '_pred_rel_mat'):
31
31
  return self._pred_rel_mat # type: ignore
32
32
 
33
+ if self.edge_label_index[1].numel() == 0:
34
+ self._pred_rel_mat = torch.zeros_like(
35
+ self.pred_index_mat,
36
+ dtype=torch.bool if self.edge_label_weight is None else
37
+ torch.get_default_dtype(),
38
+ )
39
+ return self._pred_rel_mat
40
+
33
41
  # Flatten both prediction and ground-truth indices, and determine
34
42
  # overlaps afterwards via `torch.searchsorted`.
35
43
  max_index = max( # type: ignore
@@ -139,7 +147,7 @@ class LinkPredMetric(BaseMetric):
139
147
  is_differentiable: bool = False
140
148
  full_state_update: bool = False
141
149
  higher_is_better: Optional[bool] = None
142
- weighted: bool = False
150
+ weighted: bool
143
151
 
144
152
  def __init__(self, k: int) -> None:
145
153
  super().__init__()
@@ -484,7 +492,7 @@ class LinkPredNDCG(LinkPredMetric):
484
492
  self.discount,
485
493
  self.discount.new_full((1, ), fill_value=float('inf')),
486
494
  ])
487
- discount = discount[pos.clamp(max=self.k + 1)]
495
+ discount = discount[pos.clamp(max=self.k)]
488
496
 
489
497
  idcg = scatter( # Apply discount and aggregate:
490
498
  data.edge_label_weight / discount,
@@ -62,8 +62,8 @@ class LLM(torch.nn.Module):
62
62
  def __init__(
63
63
  self,
64
64
  model_name: str,
65
- num_params: int = None,
66
- dtype=torch.bfloat16,
65
+ num_params: Optional[int] = None,
66
+ dtype: Optional[torch.dtype] = torch.bfloat16,
67
67
  ) -> None:
68
68
  super().__init__()
69
69