pyg-nightly 2.7.0.dev20250108__py3-none-any.whl → 2.7.0.dev20250111__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {pyg_nightly-2.7.0.dev20250108.dist-info → pyg_nightly-2.7.0.dev20250111.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250108.dist-info → pyg_nightly-2.7.0.dev20250111.dist-info}/RECORD +5 -5
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/molecule_gpt_dataset.py +2 -0
- {pyg_nightly-2.7.0.dev20250108.dist-info → pyg_nightly-2.7.0.dev20250111.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20250108.dist-info → pyg_nightly-2.7.0.dev20250111.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250111
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=fUnJzsRkcogsxrBzei8OXxxnZgIKDH457ws1C5Yf6fg,1904
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -115,7 +115,7 @@ torch_geometric/datasets/md17.py,sha256=BD6LU2xm6_ycXVk6r4O0poNt5Sr_PJ2P1QjNqIOL
|
|
115
115
|
torch_geometric/datasets/mixhop_synthetic_dataset.py,sha256=4NNvTHUvvV6pcqQCyVDS5XhppXUeF2H9GTfFoc49eyU,3951
|
116
116
|
torch_geometric/datasets/mnist_superpixels.py,sha256=o2ArbZ0_OE0u8VCaHmWwvngESlOFr9oM9dSEP_tjAS4,3340
|
117
117
|
torch_geometric/datasets/modelnet.py,sha256=-qmLjlQiKVWmtHefAIIE97dQxEcaBfetMJnvgYZuwkg,5347
|
118
|
-
torch_geometric/datasets/molecule_gpt_dataset.py,sha256=
|
118
|
+
torch_geometric/datasets/molecule_gpt_dataset.py,sha256=gVZv14PuZCanE4oxxHlqRNrvzGv6_KN318q5yFA3lS0,18797
|
119
119
|
torch_geometric/datasets/molecule_net.py,sha256=VNWLEDulFID8mLsxgN8q1T-O3M2i0n0Si5ISwEZezMU,7379
|
120
120
|
torch_geometric/datasets/movie_lens.py,sha256=M4Bu0Xus8IkW8GYzjxPxSdPXNbcCCx9cu6cncxBvLx8,4033
|
121
121
|
torch_geometric/datasets/movie_lens_100k.py,sha256=eTpBAteM3jqTEtiwLxmhVj4r8JvftvPx8Hvs-3ZIHlU,6057
|
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
629
629
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
630
630
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
631
631
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
632
|
-
pyg_nightly-2.7.0.
|
633
|
-
pyg_nightly-2.7.0.
|
634
|
-
pyg_nightly-2.7.0.
|
632
|
+
pyg_nightly-2.7.0.dev20250111.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
633
|
+
pyg_nightly-2.7.0.dev20250111.dist-info/METADATA,sha256=2-fvrzpsCSfm0ElMUqOmmYibkTLyl04l5LAv6aqOCgg,62977
|
634
|
+
pyg_nightly-2.7.0.dev20250111.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20250111'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
@@ -371,6 +371,7 @@ class MoleculeGPTDataset(InMemoryDataset):
|
|
371
371
|
writer.write(mol)
|
372
372
|
valid_mol_count += 1
|
373
373
|
|
374
|
+
writer.close()
|
374
375
|
print(f"block id: {block_id}\nfound {valid_mol_count}\n\n")
|
375
376
|
sys.stdout.flush()
|
376
377
|
return
|
@@ -410,6 +411,7 @@ class MoleculeGPTDataset(InMemoryDataset):
|
|
410
411
|
print(f"block id: {block_id} with 0 valid SDF file")
|
411
412
|
continue
|
412
413
|
|
414
|
+
writer.close()
|
413
415
|
print(f"In total: {len(found_CID_set)} molecules")
|
414
416
|
|
415
417
|
# Step 05. Convert to PyG data format
|
File without changes
|