pyg-nightly 2.7.0.dev20250108__py3-none-any.whl → 2.7.0.dev20250111__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250108
3
+ Version: 2.7.0.dev20250111
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=IXxcGZNLYVYDqqpE4NFzLLZCgv_6jV4p0gO4zoarQY4,1904
1
+ torch_geometric/__init__.py,sha256=fUnJzsRkcogsxrBzei8OXxxnZgIKDH457ws1C5Yf6fg,1904
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -115,7 +115,7 @@ torch_geometric/datasets/md17.py,sha256=BD6LU2xm6_ycXVk6r4O0poNt5Sr_PJ2P1QjNqIOL
115
115
  torch_geometric/datasets/mixhop_synthetic_dataset.py,sha256=4NNvTHUvvV6pcqQCyVDS5XhppXUeF2H9GTfFoc49eyU,3951
116
116
  torch_geometric/datasets/mnist_superpixels.py,sha256=o2ArbZ0_OE0u8VCaHmWwvngESlOFr9oM9dSEP_tjAS4,3340
117
117
  torch_geometric/datasets/modelnet.py,sha256=-qmLjlQiKVWmtHefAIIE97dQxEcaBfetMJnvgYZuwkg,5347
118
- torch_geometric/datasets/molecule_gpt_dataset.py,sha256=CZVi61JOM1WT-tZhSRoPDlSUtdggDn_O8i30sqH3g54,18743
118
+ torch_geometric/datasets/molecule_gpt_dataset.py,sha256=gVZv14PuZCanE4oxxHlqRNrvzGv6_KN318q5yFA3lS0,18797
119
119
  torch_geometric/datasets/molecule_net.py,sha256=VNWLEDulFID8mLsxgN8q1T-O3M2i0n0Si5ISwEZezMU,7379
120
120
  torch_geometric/datasets/movie_lens.py,sha256=M4Bu0Xus8IkW8GYzjxPxSdPXNbcCCx9cu6cncxBvLx8,4033
121
121
  torch_geometric/datasets/movie_lens_100k.py,sha256=eTpBAteM3jqTEtiwLxmhVj4r8JvftvPx8Hvs-3ZIHlU,6057
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
629
629
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
630
630
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
631
631
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
632
- pyg_nightly-2.7.0.dev20250108.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
- pyg_nightly-2.7.0.dev20250108.dist-info/METADATA,sha256=qO4EgSABDWfcGsRNkCrLyn7R3NKlkfLvpSfTCWZ5Srg,62977
634
- pyg_nightly-2.7.0.dev20250108.dist-info/RECORD,,
632
+ pyg_nightly-2.7.0.dev20250111.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
+ pyg_nightly-2.7.0.dev20250111.dist-info/METADATA,sha256=2-fvrzpsCSfm0ElMUqOmmYibkTLyl04l5LAv6aqOCgg,62977
634
+ pyg_nightly-2.7.0.dev20250111.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20250108'
33
+ __version__ = '2.7.0.dev20250111'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -371,6 +371,7 @@ class MoleculeGPTDataset(InMemoryDataset):
371
371
  writer.write(mol)
372
372
  valid_mol_count += 1
373
373
 
374
+ writer.close()
374
375
  print(f"block id: {block_id}\nfound {valid_mol_count}\n\n")
375
376
  sys.stdout.flush()
376
377
  return
@@ -410,6 +411,7 @@ class MoleculeGPTDataset(InMemoryDataset):
410
411
  print(f"block id: {block_id} with 0 valid SDF file")
411
412
  continue
412
413
 
414
+ writer.close()
413
415
  print(f"In total: {len(found_CID_set)} molecules")
414
416
 
415
417
  # Step 05. Convert to PyG data format