pyg-nightly 2.7.0.dev20250107__py3-none-any.whl → 2.7.0.dev20250108__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {pyg_nightly-2.7.0.dev20250107.dist-info → pyg_nightly-2.7.0.dev20250108.dist-info}/METADATA +2 -2
- {pyg_nightly-2.7.0.dev20250107.dist-info → pyg_nightly-2.7.0.dev20250108.dist-info}/RECORD +5 -5
- torch_geometric/__init__.py +1 -1
- torch_geometric/nn/models/glem.py +2 -1
- {pyg_nightly-2.7.0.dev20250107.dist-info → pyg_nightly-2.7.0.dev20250108.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20250107.dist-info → pyg_nightly-2.7.0.dev20250108.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250108
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -184,7 +184,7 @@ More information about evaluating final model performance can be found in the co
|
|
184
184
|
In addition to the easy application of existing GNNs, PyG makes it simple to implement custom Graph Neural Networks (see [here](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html) for the accompanying tutorial).
|
185
185
|
For example, this is all it takes to implement the [edge convolutional layer](https://arxiv.org/abs/1801.07829) from Wang *et al.*:
|
186
186
|
|
187
|
-
$$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left(
|
187
|
+
$$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( [ ~ x_i, ~ x_j - x_i ~ ] \\right)$$
|
188
188
|
|
189
189
|
```python
|
190
190
|
import torch
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=IXxcGZNLYVYDqqpE4NFzLLZCgv_6jV4p0gO4zoarQY4,1904
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -435,7 +435,7 @@ torch_geometric/nn/models/dimenet.py,sha256=Kc5p-rB5q-0e8lY22l-OdQTscTxJh2lTEpeR
|
|
435
435
|
torch_geometric/nn/models/dimenet_utils.py,sha256=Eyn_EiJqwKvuYj6BtRpSxrzMG3v4Gk98X9MxZ7uvwm4,5069
|
436
436
|
torch_geometric/nn/models/g_retriever.py,sha256=CdSOasnPiMvq5AjduNTpz-LIZiNp3X0xM5sx5MEW8Ok,8258
|
437
437
|
torch_geometric/nn/models/git_mol.py,sha256=Wc6Hx6RDDR7sDWRWHfA5eK9e9gFsrTZ9OLmpMfoj3pE,12676
|
438
|
-
torch_geometric/nn/models/glem.py,sha256=
|
438
|
+
torch_geometric/nn/models/glem.py,sha256=sT0XM4klVlci9wduvUoXupATUw9p25uXtaJBrmv3yvs,16431
|
439
439
|
torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
|
440
440
|
torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
|
441
441
|
torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
|
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
629
629
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
630
630
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
631
631
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
632
|
-
pyg_nightly-2.7.0.
|
633
|
-
pyg_nightly-2.7.0.
|
634
|
-
pyg_nightly-2.7.0.
|
632
|
+
pyg_nightly-2.7.0.dev20250108.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
633
|
+
pyg_nightly-2.7.0.dev20250108.dist-info/METADATA,sha256=qO4EgSABDWfcGsRNkCrLyn7R3NKlkfLvpSfTCWZ5Srg,62977
|
634
|
+
pyg_nightly-2.7.0.dev20250108.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20250108'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
@@ -144,7 +144,8 @@ class GLEM(torch.nn.Module):
|
|
144
144
|
acc (float): training accuracy
|
145
145
|
loss (float): loss value
|
146
146
|
"""
|
147
|
-
pseudo_labels
|
147
|
+
if pseudo_labels is not None:
|
148
|
+
pseudo_labels = pseudo_labels.to(self.device)
|
148
149
|
if em_phase == 'gnn':
|
149
150
|
acc, loss = self.train_gnn(train_loader, optimizer, epoch,
|
150
151
|
pseudo_labels, is_augmented, verbose)
|
File without changes
|