pyg-nightly 2.7.0.dev20250106__py3-none-any.whl → 2.7.0.dev20250108__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250106
3
+ Version: 2.7.0.dev20250108
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -184,7 +184,7 @@ More information about evaluating final model performance can be found in the co
184
184
  In addition to the easy application of existing GNNs, PyG makes it simple to implement custom Graph Neural Networks (see [here](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html) for the accompanying tutorial).
185
185
  For example, this is all it takes to implement the [edge convolutional layer](https://arxiv.org/abs/1801.07829) from Wang *et al.*:
186
186
 
187
- $$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( \[ ~ x_i, ~ x_j - x_i ~ \] \\right)$$
187
+ $$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( [ ~ x_i, ~ x_j - x_i ~ ] \\right)$$
188
188
 
189
189
  ```python
190
190
  import torch
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=R1yg4nT1jKKf17ozN2tHYEk6XNGMtYyhBYFwn5jeTeM,1904
1
+ torch_geometric/__init__.py,sha256=IXxcGZNLYVYDqqpE4NFzLLZCgv_6jV4p0gO4zoarQY4,1904
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -435,7 +435,7 @@ torch_geometric/nn/models/dimenet.py,sha256=Kc5p-rB5q-0e8lY22l-OdQTscTxJh2lTEpeR
435
435
  torch_geometric/nn/models/dimenet_utils.py,sha256=Eyn_EiJqwKvuYj6BtRpSxrzMG3v4Gk98X9MxZ7uvwm4,5069
436
436
  torch_geometric/nn/models/g_retriever.py,sha256=CdSOasnPiMvq5AjduNTpz-LIZiNp3X0xM5sx5MEW8Ok,8258
437
437
  torch_geometric/nn/models/git_mol.py,sha256=Wc6Hx6RDDR7sDWRWHfA5eK9e9gFsrTZ9OLmpMfoj3pE,12676
438
- torch_geometric/nn/models/glem.py,sha256=gqQF4jlU7U_u5-zGeJZuHiEqhSXa-wLU5TghN4u5fYY,16389
438
+ torch_geometric/nn/models/glem.py,sha256=sT0XM4klVlci9wduvUoXupATUw9p25uXtaJBrmv3yvs,16431
439
439
  torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
440
440
  torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
441
441
  torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
629
629
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
630
630
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
631
631
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
632
- pyg_nightly-2.7.0.dev20250106.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
- pyg_nightly-2.7.0.dev20250106.dist-info/METADATA,sha256=fkp-T6zEZ0-OqE8BwgnL7ewANGzHFJqgBQgownIQbCg,62979
634
- pyg_nightly-2.7.0.dev20250106.dist-info/RECORD,,
632
+ pyg_nightly-2.7.0.dev20250108.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
+ pyg_nightly-2.7.0.dev20250108.dist-info/METADATA,sha256=qO4EgSABDWfcGsRNkCrLyn7R3NKlkfLvpSfTCWZ5Srg,62977
634
+ pyg_nightly-2.7.0.dev20250108.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20250106'
33
+ __version__ = '2.7.0.dev20250108'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -144,7 +144,8 @@ class GLEM(torch.nn.Module):
144
144
  acc (float): training accuracy
145
145
  loss (float): loss value
146
146
  """
147
- pseudo_labels = pseudo_labels.to(self.device)
147
+ if pseudo_labels is not None:
148
+ pseudo_labels = pseudo_labels.to(self.device)
148
149
  if em_phase == 'gnn':
149
150
  acc, loss = self.train_gnn(train_loader, optimizer, epoch,
150
151
  pseudo_labels, is_augmented, verbose)