pyg-nightly 2.7.0.dev20250104__py3-none-any.whl → 2.7.0.dev20250106__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20250104
3
+ Version: 2.7.0.dev20250106
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=FimrsnaQQBo7664oG7EW9-gGnOQDy32gsDb90hRVov0,1904
1
+ torch_geometric/__init__.py,sha256=R1yg4nT1jKKf17ozN2tHYEk6XNGMtYyhBYFwn5jeTeM,1904
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -93,7 +93,7 @@ torch_geometric/datasets/gdelt_lite.py,sha256=zE1WagpgmsQARQhEgdCBtALRKyuQvIZqxT
93
93
  torch_geometric/datasets/ged_dataset.py,sha256=dtd-C6pCygNHLXgVfg3ZTWtTVHKT13Q3GlGrze1_rpo,9551
94
94
  torch_geometric/datasets/gemsec.py,sha256=oMTSryTgyed9z_4ydg3ql12KM-_35uqL1AoNls5nG8M,2820
95
95
  torch_geometric/datasets/geometry.py,sha256=-BxUMirZcUOf01c3avvF0b6wGPn-4S3Zj3Oau1RaJVk,4223
96
- torch_geometric/datasets/git_mol_dataset.py,sha256=fdE7hG_gF9bNGHaUITkEnHsZPf9FZy6F66SvvXJ5Tgc,10713
96
+ torch_geometric/datasets/git_mol_dataset.py,sha256=LsS_dPYUpwhWXMBh17iT7IbjlLOP0fFzb-we9cuBDaQ,10681
97
97
  torch_geometric/datasets/github.py,sha256=Qhqhkvi6eZ8VF_HqP1rL2iYToZavFNsQh7J1WdeM9dA,2687
98
98
  torch_geometric/datasets/gnn_benchmark_dataset.py,sha256=4P8n7czF-gf1egLYlAcSSvfB0GXIKpAbH5UjsuFld1M,6976
99
99
  torch_geometric/datasets/heterophilous_graph_dataset.py,sha256=yHHtwl4uPrid0vPOxvPV3sIS8HWdswar8FJ0h0OQ9is,4224
@@ -115,7 +115,7 @@ torch_geometric/datasets/md17.py,sha256=BD6LU2xm6_ycXVk6r4O0poNt5Sr_PJ2P1QjNqIOL
115
115
  torch_geometric/datasets/mixhop_synthetic_dataset.py,sha256=4NNvTHUvvV6pcqQCyVDS5XhppXUeF2H9GTfFoc49eyU,3951
116
116
  torch_geometric/datasets/mnist_superpixels.py,sha256=o2ArbZ0_OE0u8VCaHmWwvngESlOFr9oM9dSEP_tjAS4,3340
117
117
  torch_geometric/datasets/modelnet.py,sha256=-qmLjlQiKVWmtHefAIIE97dQxEcaBfetMJnvgYZuwkg,5347
118
- torch_geometric/datasets/molecule_gpt_dataset.py,sha256=XE14wgPVBm2kVLYL6NgXUDhv4QGHxVISG-VWEwO7hfA,18754
118
+ torch_geometric/datasets/molecule_gpt_dataset.py,sha256=CZVi61JOM1WT-tZhSRoPDlSUtdggDn_O8i30sqH3g54,18743
119
119
  torch_geometric/datasets/molecule_net.py,sha256=VNWLEDulFID8mLsxgN8q1T-O3M2i0n0Si5ISwEZezMU,7379
120
120
  torch_geometric/datasets/movie_lens.py,sha256=M4Bu0Xus8IkW8GYzjxPxSdPXNbcCCx9cu6cncxBvLx8,4033
121
121
  torch_geometric/datasets/movie_lens_100k.py,sha256=eTpBAteM3jqTEtiwLxmhVj4r8JvftvPx8Hvs-3ZIHlU,6057
@@ -623,12 +623,12 @@ torch_geometric/utils/num_nodes.py,sha256=F15ciTFOe8AxjkUh1wKH7RLmJvQYYpz-l3pPPv
623
623
  torch_geometric/utils/ppr.py,sha256=ebiHbQqRJsQbGUI5xu-IkzQSQsgIaC71vgO0KcXIKAk,4055
624
624
  torch_geometric/utils/random.py,sha256=Rv5HlhG5310rytbT9EZ7xWLGKQfozfz1azvYi5nx2-U,5148
625
625
  torch_geometric/utils/repeat.py,sha256=RxCoRoEisaP6NouXPPW5tY1Rn-tIfrmpJPm0qGP6W8M,815
626
- torch_geometric/utils/smiles.py,sha256=4xTW56OWqvQcM5i2LEvsESAIvd2n0I17n9tvarHokIw,7162
626
+ torch_geometric/utils/smiles.py,sha256=lGQ2BwJ49uBrQfIxxPz8ceTO9Jo-XCjlLxs1ql3xrsA,7130
627
627
  torch_geometric/utils/sparse.py,sha256=uYd0oPrp5XN0c2Zc15f-00rhhVMfLnRMqNcqcmILNKQ,25519
628
628
  torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5nUAUjw,6222
629
629
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
630
630
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
631
631
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
632
- pyg_nightly-2.7.0.dev20250104.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
- pyg_nightly-2.7.0.dev20250104.dist-info/METADATA,sha256=KxYh9rQVAYsqhJIatgRoCZG1WzEv3p9zAhM85gHxQZ0,62979
634
- pyg_nightly-2.7.0.dev20250104.dist-info/RECORD,,
632
+ pyg_nightly-2.7.0.dev20250106.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
+ pyg_nightly-2.7.0.dev20250106.dist-info/METADATA,sha256=fkp-T6zEZ0-OqE8BwgnL7ewANGzHFJqgBQgownIQbCg,62979
634
+ pyg_nightly-2.7.0.dev20250106.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20250104'
33
+ __version__ = '2.7.0.dev20250106'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -187,7 +187,7 @@ class GitMolDataset(InMemoryDataset):
187
187
  img = self.img_transform(img).unsqueeze(0)
188
188
  # graph
189
189
  atom_features_list = []
190
- for atom in mol.GetAtoms(): # type: ignore
190
+ for atom in mol.GetAtoms():
191
191
  atom_feature = [
192
192
  safe_index(
193
193
  allowable_features['possible_atomic_num_list'],
@@ -219,7 +219,7 @@ class GitMolDataset(InMemoryDataset):
219
219
 
220
220
  edges_list = []
221
221
  edge_features_list = []
222
- for bond in mol.GetBonds(): # type: ignore
222
+ for bond in mol.GetBonds():
223
223
  i, j = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
224
224
  edge_feature = [
225
225
  safe_index(
@@ -122,7 +122,10 @@ def clean_up_description(description: str) -> str:
122
122
  return first_sentence
123
123
 
124
124
 
125
- def extract_name(name_raw: str, description: str) -> Tuple[str, str, str]:
125
+ def extract_name(
126
+ name_raw: str,
127
+ description: str,
128
+ ) -> Tuple[Optional[str], str, str]:
126
129
  first_sentence = clean_up_description(description)
127
130
 
128
131
  splitter = ' -- -- '
@@ -446,12 +449,12 @@ class MoleculeGPTDataset(InMemoryDataset):
446
449
 
447
450
  x: torch.Tensor = torch.tensor([
448
451
  types[atom.GetSymbol()] if atom.GetSymbol() in types else 5
449
- for atom in m.GetAtoms() # type: ignore
452
+ for atom in m.GetAtoms()
450
453
  ])
451
454
  x = one_hot(x, num_classes=len(types), dtype=torch.float)
452
455
 
453
456
  rows, cols, edge_types = [], [], []
454
- for bond in m.GetBonds(): # type: ignore
457
+ for bond in m.GetBonds():
455
458
  i, j = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
456
459
  edge_types += [bonds[bond.GetBondType()]] * 2
457
460
  rows += [i, j]
@@ -91,7 +91,7 @@ def from_rdmol(mol: Any) -> 'torch_geometric.data.Data':
91
91
  assert isinstance(mol, Chem.Mol)
92
92
 
93
93
  xs: List[List[int]] = []
94
- for atom in mol.GetAtoms(): # type: ignore
94
+ for atom in mol.GetAtoms():
95
95
  row: List[int] = []
96
96
  row.append(x_map['atomic_num'].index(atom.GetAtomicNum()))
97
97
  row.append(x_map['chirality'].index(str(atom.GetChiralTag())))
@@ -108,7 +108,7 @@ def from_rdmol(mol: Any) -> 'torch_geometric.data.Data':
108
108
  x = torch.tensor(xs, dtype=torch.long).view(-1, 9)
109
109
 
110
110
  edge_indices, edge_attrs = [], []
111
- for bond in mol.GetBonds(): # type: ignore
111
+ for bond in mol.GetBonds():
112
112
  i = bond.GetBeginAtomIdx()
113
113
  j = bond.GetEndAtomIdx()
114
114