pyg-nightly 2.7.0.dev20250103__py3-none-any.whl → 2.7.0.dev20250105__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {pyg_nightly-2.7.0.dev20250103.dist-info → pyg_nightly-2.7.0.dev20250105.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20250103.dist-info → pyg_nightly-2.7.0.dev20250105.dist-info}/RECORD +7 -7
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/git_mol_dataset.py +2 -2
- torch_geometric/datasets/molecule_gpt_dataset.py +6 -3
- torch_geometric/utils/smiles.py +2 -2
- {pyg_nightly-2.7.0.dev20250103.dist-info → pyg_nightly-2.7.0.dev20250105.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20250103.dist-info → pyg_nightly-2.7.0.dev20250105.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20250105
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=JEfwebQcKdUuoo8jxWZc3G198M29-CjHesxfIB0IRVk,1904
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -93,7 +93,7 @@ torch_geometric/datasets/gdelt_lite.py,sha256=zE1WagpgmsQARQhEgdCBtALRKyuQvIZqxT
|
|
93
93
|
torch_geometric/datasets/ged_dataset.py,sha256=dtd-C6pCygNHLXgVfg3ZTWtTVHKT13Q3GlGrze1_rpo,9551
|
94
94
|
torch_geometric/datasets/gemsec.py,sha256=oMTSryTgyed9z_4ydg3ql12KM-_35uqL1AoNls5nG8M,2820
|
95
95
|
torch_geometric/datasets/geometry.py,sha256=-BxUMirZcUOf01c3avvF0b6wGPn-4S3Zj3Oau1RaJVk,4223
|
96
|
-
torch_geometric/datasets/git_mol_dataset.py,sha256=
|
96
|
+
torch_geometric/datasets/git_mol_dataset.py,sha256=LsS_dPYUpwhWXMBh17iT7IbjlLOP0fFzb-we9cuBDaQ,10681
|
97
97
|
torch_geometric/datasets/github.py,sha256=Qhqhkvi6eZ8VF_HqP1rL2iYToZavFNsQh7J1WdeM9dA,2687
|
98
98
|
torch_geometric/datasets/gnn_benchmark_dataset.py,sha256=4P8n7czF-gf1egLYlAcSSvfB0GXIKpAbH5UjsuFld1M,6976
|
99
99
|
torch_geometric/datasets/heterophilous_graph_dataset.py,sha256=yHHtwl4uPrid0vPOxvPV3sIS8HWdswar8FJ0h0OQ9is,4224
|
@@ -115,7 +115,7 @@ torch_geometric/datasets/md17.py,sha256=BD6LU2xm6_ycXVk6r4O0poNt5Sr_PJ2P1QjNqIOL
|
|
115
115
|
torch_geometric/datasets/mixhop_synthetic_dataset.py,sha256=4NNvTHUvvV6pcqQCyVDS5XhppXUeF2H9GTfFoc49eyU,3951
|
116
116
|
torch_geometric/datasets/mnist_superpixels.py,sha256=o2ArbZ0_OE0u8VCaHmWwvngESlOFr9oM9dSEP_tjAS4,3340
|
117
117
|
torch_geometric/datasets/modelnet.py,sha256=-qmLjlQiKVWmtHefAIIE97dQxEcaBfetMJnvgYZuwkg,5347
|
118
|
-
torch_geometric/datasets/molecule_gpt_dataset.py,sha256=
|
118
|
+
torch_geometric/datasets/molecule_gpt_dataset.py,sha256=CZVi61JOM1WT-tZhSRoPDlSUtdggDn_O8i30sqH3g54,18743
|
119
119
|
torch_geometric/datasets/molecule_net.py,sha256=VNWLEDulFID8mLsxgN8q1T-O3M2i0n0Si5ISwEZezMU,7379
|
120
120
|
torch_geometric/datasets/movie_lens.py,sha256=M4Bu0Xus8IkW8GYzjxPxSdPXNbcCCx9cu6cncxBvLx8,4033
|
121
121
|
torch_geometric/datasets/movie_lens_100k.py,sha256=eTpBAteM3jqTEtiwLxmhVj4r8JvftvPx8Hvs-3ZIHlU,6057
|
@@ -623,12 +623,12 @@ torch_geometric/utils/num_nodes.py,sha256=F15ciTFOe8AxjkUh1wKH7RLmJvQYYpz-l3pPPv
|
|
623
623
|
torch_geometric/utils/ppr.py,sha256=ebiHbQqRJsQbGUI5xu-IkzQSQsgIaC71vgO0KcXIKAk,4055
|
624
624
|
torch_geometric/utils/random.py,sha256=Rv5HlhG5310rytbT9EZ7xWLGKQfozfz1azvYi5nx2-U,5148
|
625
625
|
torch_geometric/utils/repeat.py,sha256=RxCoRoEisaP6NouXPPW5tY1Rn-tIfrmpJPm0qGP6W8M,815
|
626
|
-
torch_geometric/utils/smiles.py,sha256=
|
626
|
+
torch_geometric/utils/smiles.py,sha256=lGQ2BwJ49uBrQfIxxPz8ceTO9Jo-XCjlLxs1ql3xrsA,7130
|
627
627
|
torch_geometric/utils/sparse.py,sha256=uYd0oPrp5XN0c2Zc15f-00rhhVMfLnRMqNcqcmILNKQ,25519
|
628
628
|
torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5nUAUjw,6222
|
629
629
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
630
630
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
631
631
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
632
|
-
pyg_nightly-2.7.0.
|
633
|
-
pyg_nightly-2.7.0.
|
634
|
-
pyg_nightly-2.7.0.
|
632
|
+
pyg_nightly-2.7.0.dev20250105.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
633
|
+
pyg_nightly-2.7.0.dev20250105.dist-info/METADATA,sha256=3BZ6rLTku0tfveDALCfFF3m2OKI6LJJuCN75lTRA9PE,62979
|
634
|
+
pyg_nightly-2.7.0.dev20250105.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20250105'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
@@ -187,7 +187,7 @@ class GitMolDataset(InMemoryDataset):
|
|
187
187
|
img = self.img_transform(img).unsqueeze(0)
|
188
188
|
# graph
|
189
189
|
atom_features_list = []
|
190
|
-
for atom in mol.GetAtoms():
|
190
|
+
for atom in mol.GetAtoms():
|
191
191
|
atom_feature = [
|
192
192
|
safe_index(
|
193
193
|
allowable_features['possible_atomic_num_list'],
|
@@ -219,7 +219,7 @@ class GitMolDataset(InMemoryDataset):
|
|
219
219
|
|
220
220
|
edges_list = []
|
221
221
|
edge_features_list = []
|
222
|
-
for bond in mol.GetBonds():
|
222
|
+
for bond in mol.GetBonds():
|
223
223
|
i, j = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
|
224
224
|
edge_feature = [
|
225
225
|
safe_index(
|
@@ -122,7 +122,10 @@ def clean_up_description(description: str) -> str:
|
|
122
122
|
return first_sentence
|
123
123
|
|
124
124
|
|
125
|
-
def extract_name(
|
125
|
+
def extract_name(
|
126
|
+
name_raw: str,
|
127
|
+
description: str,
|
128
|
+
) -> Tuple[Optional[str], str, str]:
|
126
129
|
first_sentence = clean_up_description(description)
|
127
130
|
|
128
131
|
splitter = ' -- -- '
|
@@ -446,12 +449,12 @@ class MoleculeGPTDataset(InMemoryDataset):
|
|
446
449
|
|
447
450
|
x: torch.Tensor = torch.tensor([
|
448
451
|
types[atom.GetSymbol()] if atom.GetSymbol() in types else 5
|
449
|
-
for atom in m.GetAtoms()
|
452
|
+
for atom in m.GetAtoms()
|
450
453
|
])
|
451
454
|
x = one_hot(x, num_classes=len(types), dtype=torch.float)
|
452
455
|
|
453
456
|
rows, cols, edge_types = [], [], []
|
454
|
-
for bond in m.GetBonds():
|
457
|
+
for bond in m.GetBonds():
|
455
458
|
i, j = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
|
456
459
|
edge_types += [bonds[bond.GetBondType()]] * 2
|
457
460
|
rows += [i, j]
|
torch_geometric/utils/smiles.py
CHANGED
@@ -91,7 +91,7 @@ def from_rdmol(mol: Any) -> 'torch_geometric.data.Data':
|
|
91
91
|
assert isinstance(mol, Chem.Mol)
|
92
92
|
|
93
93
|
xs: List[List[int]] = []
|
94
|
-
for atom in mol.GetAtoms():
|
94
|
+
for atom in mol.GetAtoms():
|
95
95
|
row: List[int] = []
|
96
96
|
row.append(x_map['atomic_num'].index(atom.GetAtomicNum()))
|
97
97
|
row.append(x_map['chirality'].index(str(atom.GetChiralTag())))
|
@@ -108,7 +108,7 @@ def from_rdmol(mol: Any) -> 'torch_geometric.data.Data':
|
|
108
108
|
x = torch.tensor(xs, dtype=torch.long).view(-1, 9)
|
109
109
|
|
110
110
|
edge_indices, edge_attrs = [], []
|
111
|
-
for bond in mol.GetBonds():
|
111
|
+
for bond in mol.GetBonds():
|
112
112
|
i = bond.GetBeginAtomIdx()
|
113
113
|
j = bond.GetEndAtomIdx()
|
114
114
|
|
File without changes
|