pyg-nightly 2.7.0.dev20241217__py3-none-any.whl → 2.7.0.dev20241220__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20241217
3
+ Version: 2.7.0.dev20241220
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=1HuEtvdvdMFbirzxK-9IXKdmcvska8QDJov2Gd4H5i8,1904
1
+ torch_geometric/__init__.py,sha256=7zN_sAz0sz3-TccB1TSQMCBPvtZZdLYfz3_bMuS8Gyc,1904
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -18,7 +18,7 @@ torch_geometric/logging.py,sha256=HmHHLiCcM64k-6UYNOSfXPIeSGNAyiGGcn8cD8tlyuQ,85
18
18
  torch_geometric/resolver.py,sha256=fn-_6mCpI2xv7eDZnIFcYrHOn0IrwbkWFLDb9laQrWI,1270
19
19
  torch_geometric/seed.py,sha256=MJLbVwpb9i8mK3oi32sS__Cq-dRq_afTeoOL_HoA9ko,372
20
20
  torch_geometric/template.py,sha256=rqjDWgcSAgTCiV4bkOjWRPaO4PpUdC_RXigzxxBqAu8,1060
21
- torch_geometric/typing.py,sha256=PO6jvRjcGkZoMPBEo9GANZN5gUqHV1YEbUBbbdaX1oE,14331
21
+ torch_geometric/typing.py,sha256=SzuZPdeYLt7_lFUHHcAlaggxqLA0VZ_kx8s0iy_tMIw,14429
22
22
  torch_geometric/warnings.py,sha256=t114CbkrmiqkXaavx5g7OO52dLdktf-U__B5QqYIQvI,413
23
23
  torch_geometric/contrib/__init__.py,sha256=0pWkmXfZtbdr-AKwlii5LTFggTEH-MCrSKpZxrtPlVs,352
24
24
  torch_geometric/contrib/datasets/__init__.py,sha256=lrGnWsEiJf5zsBRmshGZZFN_uYR2ezDjbj9n9nCpvtk,23
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
629
629
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
630
630
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
631
631
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
632
- pyg_nightly-2.7.0.dev20241217.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
- pyg_nightly-2.7.0.dev20241217.dist-info/METADATA,sha256=PETG9aJs239-l5Yxwd9lEO_uQRQoodTXSLR1aXw7Nzk,62979
634
- pyg_nightly-2.7.0.dev20241217.dist-info/RECORD,,
632
+ pyg_nightly-2.7.0.dev20241220.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
+ pyg_nightly-2.7.0.dev20241220.dist-info/METADATA,sha256=M6ef6Gs5s_7wjbXsomPOgXqFg9ebiuTk_UJPEwkCJBI,62979
634
+ pyg_nightly-2.7.0.dev20241220.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20241217'
33
+ __version__ = '2.7.0.dev20241220'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
torch_geometric/typing.py CHANGED
@@ -345,6 +345,9 @@ class EdgeTypeStr(str):
345
345
  f"tuple since it holds invalid characters")
346
346
  return self.edge_type
347
347
 
348
+ def __reduce__(self) -> tuple[Any, Any]:
349
+ return (self.__class__, (self.edge_type, ))
350
+
348
351
 
349
352
  # There exist some short-cuts to query edge-types (given that the full triplet
350
353
  # can be uniquely reconstructed, e.g.: