pyg-nightly 2.7.0.dev20241217__py3-none-any.whl → 2.7.0.dev20241219__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20241217
3
+ Version: 2.7.0.dev20241219
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=1HuEtvdvdMFbirzxK-9IXKdmcvska8QDJov2Gd4H5i8,1904
1
+ torch_geometric/__init__.py,sha256=xKIr4PMzE6gYXjvb1BzKQz1K_Tydwy4w9loSPAfezp8,1904
2
2
  torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -18,7 +18,7 @@ torch_geometric/logging.py,sha256=HmHHLiCcM64k-6UYNOSfXPIeSGNAyiGGcn8cD8tlyuQ,85
18
18
  torch_geometric/resolver.py,sha256=fn-_6mCpI2xv7eDZnIFcYrHOn0IrwbkWFLDb9laQrWI,1270
19
19
  torch_geometric/seed.py,sha256=MJLbVwpb9i8mK3oi32sS__Cq-dRq_afTeoOL_HoA9ko,372
20
20
  torch_geometric/template.py,sha256=rqjDWgcSAgTCiV4bkOjWRPaO4PpUdC_RXigzxxBqAu8,1060
21
- torch_geometric/typing.py,sha256=PO6jvRjcGkZoMPBEo9GANZN5gUqHV1YEbUBbbdaX1oE,14331
21
+ torch_geometric/typing.py,sha256=SzuZPdeYLt7_lFUHHcAlaggxqLA0VZ_kx8s0iy_tMIw,14429
22
22
  torch_geometric/warnings.py,sha256=t114CbkrmiqkXaavx5g7OO52dLdktf-U__B5QqYIQvI,413
23
23
  torch_geometric/contrib/__init__.py,sha256=0pWkmXfZtbdr-AKwlii5LTFggTEH-MCrSKpZxrtPlVs,352
24
24
  torch_geometric/contrib/datasets/__init__.py,sha256=lrGnWsEiJf5zsBRmshGZZFN_uYR2ezDjbj9n9nCpvtk,23
@@ -629,6 +629,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
629
629
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
630
630
  torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
631
631
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
632
- pyg_nightly-2.7.0.dev20241217.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
- pyg_nightly-2.7.0.dev20241217.dist-info/METADATA,sha256=PETG9aJs239-l5Yxwd9lEO_uQRQoodTXSLR1aXw7Nzk,62979
634
- pyg_nightly-2.7.0.dev20241217.dist-info/RECORD,,
632
+ pyg_nightly-2.7.0.dev20241219.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
633
+ pyg_nightly-2.7.0.dev20241219.dist-info/METADATA,sha256=zVuGAJZdYk05U_juPOKh_9cmhnEiMbLqX6sSDehVHnU,62979
634
+ pyg_nightly-2.7.0.dev20241219.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20241217'
33
+ __version__ = '2.7.0.dev20241219'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
torch_geometric/typing.py CHANGED
@@ -345,6 +345,9 @@ class EdgeTypeStr(str):
345
345
  f"tuple since it holds invalid characters")
346
346
  return self.edge_type
347
347
 
348
+ def __reduce__(self) -> tuple[Any, Any]:
349
+ return (self.__class__, (self.edge_type, ))
350
+
348
351
 
349
352
  # There exist some short-cuts to query edge-types (given that the full triplet
350
353
  # can be uniquely reconstructed, e.g.: