pyg-nightly 2.7.0.dev20241119__py3-none-any.whl → 2.7.0.dev20241120__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20241119.dist-info → pyg_nightly-2.7.0.dev20241120.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20241119.dist-info → pyg_nightly-2.7.0.dev20241120.dist-info}/RECORD +14 -9
- torch_geometric/__init__.py +1 -1
- torch_geometric/datasets/__init__.py +4 -0
- torch_geometric/datasets/molecule_gpt_dataset.py +480 -0
- torch_geometric/datasets/tag_dataset.py +350 -0
- torch_geometric/nn/attention/__init__.py +5 -1
- torch_geometric/nn/attention/qformer.py +71 -0
- torch_geometric/nn/models/__init__.py +4 -1
- torch_geometric/nn/models/glem.py +384 -0
- torch_geometric/nn/models/molecule_gpt.py +222 -0
- torch_geometric/nn/nlp/llm.py +1 -1
- torch_geometric/nn/nlp/sentence_transformer.py +3 -0
- {pyg_nightly-2.7.0.dev20241119.dist-info → pyg_nightly-2.7.0.dev20241120.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20241119.dist-info → pyg_nightly-2.7.0.dev20241120.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20241120
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=6TaGIcKhVXKpuS3oTnQXpL4e32Kq0tg7fGKeaWvRoZU,1904
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -53,7 +53,7 @@ torch_geometric/data/temporal.py,sha256=WOJ6gFrTLikaLhUvotyUF5ql14FkE5Ox3hNkdSp6
|
|
53
53
|
torch_geometric/data/view.py,sha256=XjkVSc-UWZFCT4DlXLShZtO8duhFQkS9gq88zZXANsk,1089
|
54
54
|
torch_geometric/data/lightning/__init__.py,sha256=w3En1tJfy3kSqe1MycpOyZpHFO3fxBCgNCUOznPA3YU,178
|
55
55
|
torch_geometric/data/lightning/datamodule.py,sha256=Bn9iaIfE4NWDDWWMqCvBeZ4bIW1Silx_Ol5CPJCliaQ,29242
|
56
|
-
torch_geometric/datasets/__init__.py,sha256=
|
56
|
+
torch_geometric/datasets/__init__.py,sha256=f9YqoX9WTSVMzjuLfFD_eCsC4iQ5kbFNQiZru3n6qw0,6013
|
57
57
|
torch_geometric/datasets/actor.py,sha256=oUxgJIX8bi5hJr1etWNYIFyVQNDDXi1nyVpHGGMEAGQ,4304
|
58
58
|
torch_geometric/datasets/airfrans.py,sha256=212gYsk7PvF-qcmvM2YXaOBhFrS79evAGg_sPHXih4w,5439
|
59
59
|
torch_geometric/datasets/airports.py,sha256=b3gkv3gY2JkUpmGiz36Z-g7EcnSfU8lBG1YsCOWdJ6k,3758
|
@@ -113,6 +113,7 @@ torch_geometric/datasets/md17.py,sha256=BD6LU2xm6_ycXVk6r4O0poNt5Sr_PJ2P1QjNqIOL
|
|
113
113
|
torch_geometric/datasets/mixhop_synthetic_dataset.py,sha256=4NNvTHUvvV6pcqQCyVDS5XhppXUeF2H9GTfFoc49eyU,3951
|
114
114
|
torch_geometric/datasets/mnist_superpixels.py,sha256=o2ArbZ0_OE0u8VCaHmWwvngESlOFr9oM9dSEP_tjAS4,3340
|
115
115
|
torch_geometric/datasets/modelnet.py,sha256=-qmLjlQiKVWmtHefAIIE97dQxEcaBfetMJnvgYZuwkg,5347
|
116
|
+
torch_geometric/datasets/molecule_gpt_dataset.py,sha256=XE14wgPVBm2kVLYL6NgXUDhv4QGHxVISG-VWEwO7hfA,18754
|
116
117
|
torch_geometric/datasets/molecule_net.py,sha256=VNWLEDulFID8mLsxgN8q1T-O3M2i0n0Si5ISwEZezMU,7379
|
117
118
|
torch_geometric/datasets/movie_lens.py,sha256=M4Bu0Xus8IkW8GYzjxPxSdPXNbcCCx9cu6cncxBvLx8,4033
|
118
119
|
torch_geometric/datasets/movie_lens_100k.py,sha256=eTpBAteM3jqTEtiwLxmhVj4r8JvftvPx8Hvs-3ZIHlU,6057
|
@@ -144,6 +145,7 @@ torch_geometric/datasets/shapenet.py,sha256=tn3HiQQAr6lxHrqxfOVaAtl40guwFYTXWCbS
|
|
144
145
|
torch_geometric/datasets/shrec2016.py,sha256=cTLhctbqE0EUEvKddJFhPzDb1oLKXOth4O_WzsWtyMk,6323
|
145
146
|
torch_geometric/datasets/snap_dataset.py,sha256=r3sC-dHDouyaYoHGdoBY0uO0qOOvD6_Hb96d2ceGMZk,9433
|
146
147
|
torch_geometric/datasets/suite_sparse.py,sha256=eqjH4vAUq872qdk3YdLkZSwlu6r7HHpTgK0vEVGmY1s,3278
|
148
|
+
torch_geometric/datasets/tag_dataset.py,sha256=0fzOsakR9L9CK6ppGN-USD4-Vq-ssbQ2Xovw2nqqtWo,14759
|
147
149
|
torch_geometric/datasets/taobao.py,sha256=CUcZpbWsNTasevflO8zqP0YvENy89P7wpKS4MHaDJ6Q,4170
|
148
150
|
torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDCvABc,4632
|
149
151
|
torch_geometric/datasets/tu_dataset.py,sha256=14OSaXBgVwT1dX2h1wZ3xVIwoo0GQBEfR3yWh6Q0VF0,7847
|
@@ -324,8 +326,9 @@ torch_geometric/nn/aggr/set_transformer.py,sha256=FG7_JizpFX14M6VSCwLSjYXYdJ1ZiQ
|
|
324
326
|
torch_geometric/nn/aggr/sort.py,sha256=bvOOWnFkNOBOZih4rqVZQsjfeDX3vmXo1bpPSFD846w,2507
|
325
327
|
torch_geometric/nn/aggr/utils.py,sha256=CLJ-ZrVWYIOBpdhQBLAz94dj3cMKKKc3qwGr4DFbiCU,8338
|
326
328
|
torch_geometric/nn/aggr/variance_preserving.py,sha256=fu-U_aGYpVLpgSFvVg0ONMe6nqoyv8tZ6Y35qMYTf9w,1126
|
327
|
-
torch_geometric/nn/attention/__init__.py,sha256=
|
329
|
+
torch_geometric/nn/attention/__init__.py,sha256=1lCB7zh7uM6FkpW81S9U4CvxTwpCkz59KatPTIE9UmA,127
|
328
330
|
torch_geometric/nn/attention/performer.py,sha256=2PCDn4_-oNTao2-DkXIaoi18anP01OxRELF2pvp-jk8,7357
|
331
|
+
torch_geometric/nn/attention/qformer.py,sha256=7J-pWm_vpumK38IC-iCBz4oqL-BEIofEIxJ0wfjWq9A,2338
|
329
332
|
torch_geometric/nn/conv/__init__.py,sha256=37zTdt0gfSAUPMtwXjZg5mWx_itojJVFNODYR1h1ch0,3515
|
330
333
|
torch_geometric/nn/conv/agnn_conv.py,sha256=5nEPLx_BBHcDaO6HWzLuHfXc0Yd_reKynAOH0Iq09lU,3077
|
331
334
|
torch_geometric/nn/conv/antisymmetric_conv.py,sha256=dhA6sCETy1jlXReYJZBSyToOcL_mZ1wL10fMIb8Ppuw,4387
|
@@ -417,7 +420,7 @@ torch_geometric/nn/kge/distmult.py,sha256=dGQ0bVzjreZgFN1lXE23_IIidsiOq7ehPrMb-N
|
|
417
420
|
torch_geometric/nn/kge/loader.py,sha256=5Uc1j3OUMQnBYSHDqL7pLCty1siFLzoPkztigYO2zP8,771
|
418
421
|
torch_geometric/nn/kge/rotate.py,sha256=XLuO1AbyTt5cJxr97ZzoyAyIEsHKesgW5TvDmnGJAao,3208
|
419
422
|
torch_geometric/nn/kge/transe.py,sha256=jlejq5BLMm-sb1wWcLDp7pZqCdelWBgjDIC8ctbjSdU,3088
|
420
|
-
torch_geometric/nn/models/__init__.py,sha256=
|
423
|
+
torch_geometric/nn/models/__init__.py,sha256=dr2-YsRzUdVBM6Ut78FB9Wbjn-kzV0gPwOlWGPdQLY4,2108
|
421
424
|
torch_geometric/nn/models/attentive_fp.py,sha256=tkgvw28wg9-JqHIfBllfCwTHrZIUiv85yZJcDqjz3z0,6634
|
422
425
|
torch_geometric/nn/models/autoencoder.py,sha256=nGje-zty78Y3hxOJ9o0_6QziJjOvBlknk6z0_fDQwQU,10770
|
423
426
|
torch_geometric/nn/models/basic_gnn.py,sha256=PGa0RUMyvrNy_5yRI2jX_zwPsmZXwOQWfsWvxOiHsSk,31225
|
@@ -428,6 +431,7 @@ torch_geometric/nn/models/deepgcn.py,sha256=tIgT03cj8MghYlxEozpoGvGG_CwpJrGDxv1Z
|
|
428
431
|
torch_geometric/nn/models/dimenet.py,sha256=Kc5p-rB5q-0e8lY22l-OdQTscTxJh2lTEpeRFMdL4RY,36186
|
429
432
|
torch_geometric/nn/models/dimenet_utils.py,sha256=Eyn_EiJqwKvuYj6BtRpSxrzMG3v4Gk98X9MxZ7uvwm4,5069
|
430
433
|
torch_geometric/nn/models/g_retriever.py,sha256=VueRImNJlh1WvRWcsSXliSw8RlxlzWlu2WSFs_VQaJc,7749
|
434
|
+
torch_geometric/nn/models/glem.py,sha256=gqQF4jlU7U_u5-zGeJZuHiEqhSXa-wLU5TghN4u5fYY,16389
|
431
435
|
torch_geometric/nn/models/gnnff.py,sha256=15dkiLgy0LmH1hnUrpeoHioIp4BPTfjpVATpnGRt9E0,7860
|
432
436
|
torch_geometric/nn/models/graph_mixer.py,sha256=mthMeCOikR8gseEsu4oJ3Cd9C35zHSv1p32ROwnG-6s,9246
|
433
437
|
torch_geometric/nn/models/graph_unet.py,sha256=N8TSmJo8AlbZjjcame0xW_jZvMOirL5ahw6qv5Yjpbs,5586
|
@@ -439,6 +443,7 @@ torch_geometric/nn/models/mask_label.py,sha256=B2HcL6ZkaUEo3a8nebZoUqEIfDEfcIGOV
|
|
439
443
|
torch_geometric/nn/models/meta.py,sha256=lQWovjdQgTGT_rDAm6L186ObINeQCD9tLBz8xenmrF0,6540
|
440
444
|
torch_geometric/nn/models/metapath2vec.py,sha256=nxttGe4QVWr4teYEoNz8uHRu-yVsLSZPOeF_tz0bj2o,10788
|
441
445
|
torch_geometric/nn/models/mlp.py,sha256=rdwUFxxxqLjXK-iy1L1sXiwSNwAfqTlvHLaqVZ-jwCs,10315
|
446
|
+
torch_geometric/nn/models/molecule_gpt.py,sha256=k-XULH6jaurj-R2EE4sIWTkqlNqa3CzWxfQgfFa-G8s,7637
|
442
447
|
torch_geometric/nn/models/neural_fingerprint.py,sha256=pTLJgU9Uh2Lnf9bggLj4cKI8YdEFcMF-9MALuubqbuQ,2378
|
443
448
|
torch_geometric/nn/models/node2vec.py,sha256=U-VhJlvt5lT-JShFrF5tN84wCPqoVuftLVNyOVXs0OU,7664
|
444
449
|
torch_geometric/nn/models/pmlp.py,sha256=dcAASVSyQMMhItSfEJWPeAFh0R3tNCwAHwdrShwQ8o4,3538
|
@@ -450,8 +455,8 @@ torch_geometric/nn/models/signed_gcn.py,sha256=J40CnedFIqtKI1LhW1ITSEFRbA_XiJZL6
|
|
450
455
|
torch_geometric/nn/models/tgn.py,sha256=kEGdfLJybkbMT4UMoAh2nCzfX3_nDjfm1cicuPHEwAM,11878
|
451
456
|
torch_geometric/nn/models/visnet.py,sha256=97OFMCsPDEI5BCSi7RhoRcU2CNRp7zck2tEzrltFZj4,43192
|
452
457
|
torch_geometric/nn/nlp/__init__.py,sha256=JJESTA7w_K8v60XbCd25IqmrKKHLz5OiNexMHYGV2mE,138
|
453
|
-
torch_geometric/nn/nlp/llm.py,sha256=
|
454
|
-
torch_geometric/nn/nlp/sentence_transformer.py,sha256=
|
458
|
+
torch_geometric/nn/nlp/llm.py,sha256=M15Qn0yHyA6HL2rHCH2p4H6hKjUvLfnzlxdfEFvRxSA,11732
|
459
|
+
torch_geometric/nn/nlp/sentence_transformer.py,sha256=VzMtNUYk6FvOVc3PdVets9_2Sb2FdQbzu9H3m6teRlI,3417
|
455
460
|
torch_geometric/nn/norm/__init__.py,sha256=u2qIDrkbeuObGVXSAIftAlvSd6ouGTtxznCfD-59UiA,669
|
456
461
|
torch_geometric/nn/norm/batch_norm.py,sha256=sJKrinHGwA-noIgteg1RD2W06rd0zskD-rXuY-36glY,8283
|
457
462
|
torch_geometric/nn/norm/diff_group_norm.py,sha256=b57XvNekrUYGDjNJlGeqvaMGNJmHwopSF0_yyBWlLuA,4722
|
@@ -618,6 +623,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
618
623
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
619
624
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
620
625
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
621
|
-
pyg_nightly-2.7.0.
|
622
|
-
pyg_nightly-2.7.0.
|
623
|
-
pyg_nightly-2.7.0.
|
626
|
+
pyg_nightly-2.7.0.dev20241120.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
627
|
+
pyg_nightly-2.7.0.dev20241120.dist-info/METADATA,sha256=vWh7yN2ZZvIhSw04tE8VdrXEQZ5TFeItmVYp8xPL7kQ,62979
|
628
|
+
pyg_nightly-2.7.0.dev20241120.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20241120'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
@@ -77,6 +77,8 @@ from .myket import MyketDataset
|
|
77
77
|
from .brca_tgca import BrcaTcga
|
78
78
|
from .neurograph import NeuroGraphDataset
|
79
79
|
from .web_qsp_dataset import WebQSPDataset
|
80
|
+
from .molecule_gpt_dataset import MoleculeGPTDataset
|
81
|
+
from .tag_dataset import TAGDataset
|
80
82
|
|
81
83
|
from .dbp15k import DBP15K
|
82
84
|
from .aminer import AMiner
|
@@ -190,6 +192,8 @@ homo_datasets = [
|
|
190
192
|
'BrcaTcga',
|
191
193
|
'NeuroGraphDataset',
|
192
194
|
'WebQSPDataset',
|
195
|
+
'MoleculeGPTDataset',
|
196
|
+
'TAGDataset',
|
193
197
|
]
|
194
198
|
|
195
199
|
hetero_datasets = [
|
@@ -0,0 +1,480 @@
|
|
1
|
+
import gzip
|
2
|
+
import json
|
3
|
+
import multiprocessing
|
4
|
+
import os
|
5
|
+
import sys
|
6
|
+
from collections import defaultdict
|
7
|
+
from multiprocessing import Pool
|
8
|
+
from typing import Callable, List, Optional, Tuple
|
9
|
+
|
10
|
+
import numpy as np
|
11
|
+
import requests
|
12
|
+
import torch
|
13
|
+
from tqdm import tqdm
|
14
|
+
|
15
|
+
from torch_geometric.data import Data, InMemoryDataset, download_url
|
16
|
+
from torch_geometric.io import fs
|
17
|
+
from torch_geometric.nn.nlp import LLM
|
18
|
+
from torch_geometric.utils import one_hot
|
19
|
+
|
20
|
+
|
21
|
+
def clean_up_description(description: str) -> str:
|
22
|
+
description = description + " "
|
23
|
+
|
24
|
+
# extra adj Pure
|
25
|
+
if description.startswith("Pure "):
|
26
|
+
description = description.replace("Pure ", "")
|
27
|
+
# fix typo
|
28
|
+
if description.startswith("Mercurycombines"):
|
29
|
+
description = description.replace("Mercurycombines",
|
30
|
+
"Mercury combines")
|
31
|
+
|
32
|
+
# a special case
|
33
|
+
description = description.replace(
|
34
|
+
"17-Hydroxy-6-methylpregna-3,6-diene-3,20-dione. ",
|
35
|
+
"17-Hydroxy-6-methylpregna-3,6-diene-3,20-dione is ")
|
36
|
+
|
37
|
+
# a special case
|
38
|
+
description = description.replace("5-Thymidylic acid. ",
|
39
|
+
"5-Thymidylic acid. is ")
|
40
|
+
|
41
|
+
# a special case
|
42
|
+
description = description.replace(
|
43
|
+
"5'-S-(3-Amino-3-carboxypropyl)-5'-thioadenosine. ",
|
44
|
+
"5'-S-(3-Amino-3-carboxypropyl)-5'-thioadenosine. is ")
|
45
|
+
|
46
|
+
# a special case
|
47
|
+
description = description.replace(
|
48
|
+
("Guanosine 5'-(trihydrogen diphosphate), monoanhydride"
|
49
|
+
" with phosphorothioic acid. "),
|
50
|
+
("Guanosine 5'-(trihydrogen diphosphate), monoanhydride"
|
51
|
+
" with phosphorothioic acid is "))
|
52
|
+
|
53
|
+
# a special case
|
54
|
+
description = description.replace("5'-Uridylic acid. ",
|
55
|
+
"5'-Uridylic acid is ")
|
56
|
+
|
57
|
+
# a special case
|
58
|
+
description = description.replace("5'-Adenylic acid, ",
|
59
|
+
"5'-Adenylic acid is ")
|
60
|
+
|
61
|
+
# a special case
|
62
|
+
description = description.replace(
|
63
|
+
"Uridine 5'-(tetrahydrogen triphosphate). ",
|
64
|
+
"Uridine 5'-(tetrahydrogen triphosphate). is ")
|
65
|
+
|
66
|
+
# a special case
|
67
|
+
description = description.replace("Inosine 5'-Monophosphate. ",
|
68
|
+
"Inosine 5'-Monophosphate. is ")
|
69
|
+
|
70
|
+
# a special case
|
71
|
+
description = description.replace("Pivaloyloxymethyl butyrate (AN-9), ",
|
72
|
+
"Pivaloyloxymethyl butyrate (AN-9) is ")
|
73
|
+
|
74
|
+
# a special case
|
75
|
+
description = description.replace(
|
76
|
+
"4-Amino-5-cyano-7-(D-ribofuranosyl)-7H- pyrrolo(2,3-d)pyrimidine. ",
|
77
|
+
"4-Amino-5-cyano-7-(D-ribofuranosyl)-7H- pyrrolo(2,3-d)pyrimidine is ")
|
78
|
+
|
79
|
+
# a special case
|
80
|
+
description = description.replace(
|
81
|
+
"Cardamonin (also known as Dihydroxymethoxychalcone), ",
|
82
|
+
"Cardamonin (also known as Dihydroxymethoxychalcone) is ")
|
83
|
+
|
84
|
+
# a special case
|
85
|
+
description = description.replace("Lithium has been used to treat ",
|
86
|
+
"Lithium is ")
|
87
|
+
|
88
|
+
# a special case
|
89
|
+
description = description.replace("4,4'-Methylenebis ",
|
90
|
+
"4,4'-Methylenebis is ")
|
91
|
+
|
92
|
+
# a special case
|
93
|
+
description = description.replace(
|
94
|
+
"2,3,7,8-Tetrachlorodibenzo-p-dioxin",
|
95
|
+
"2,3,7,8-Tetrachlorodibenzo-p-dioxin is ")
|
96
|
+
|
97
|
+
# a special case
|
98
|
+
description = description.replace("Exposure to 2,4,5-trichlorophenol ",
|
99
|
+
"2,4,5-Trichlorophenol exposure ")
|
100
|
+
|
101
|
+
index = 0
|
102
|
+
L = len(description)
|
103
|
+
if description.startswith('C.I. '):
|
104
|
+
start_index = len('C.I. ')
|
105
|
+
elif description.startswith('Nectriapyrone. D '):
|
106
|
+
start_index = len('Nectriapyrone. D ')
|
107
|
+
elif description.startswith(
|
108
|
+
'Salmonella enterica sv. Minnesota LPS core oligosaccharide'):
|
109
|
+
start_index = len(
|
110
|
+
'Salmonella enterica sv. Minnesota LPS core oligosaccharide')
|
111
|
+
else:
|
112
|
+
start_index = 0
|
113
|
+
for index in range(start_index, L - 1):
|
114
|
+
if index < L - 2:
|
115
|
+
if description[index] == '.' and description[
|
116
|
+
index + 1] == ' ' and 'A' <= description[index + 2] <= 'Z':
|
117
|
+
break
|
118
|
+
elif index == L - 2:
|
119
|
+
break
|
120
|
+
|
121
|
+
first_sentence = description[:index + 1]
|
122
|
+
return first_sentence
|
123
|
+
|
124
|
+
|
125
|
+
def extract_name(name_raw: str, description: str) -> Tuple[str, str, str]:
|
126
|
+
first_sentence = clean_up_description(description)
|
127
|
+
|
128
|
+
splitter = ' -- -- '
|
129
|
+
if ' are ' in first_sentence or ' were ' in first_sentence:
|
130
|
+
replaced_words = 'These molecules'
|
131
|
+
else:
|
132
|
+
replaced_words = 'This molecule'
|
133
|
+
|
134
|
+
first_sentence = first_sentence.replace(' is ', splitter)
|
135
|
+
first_sentence = first_sentence.replace(' are ', splitter)
|
136
|
+
first_sentence = first_sentence.replace(' was ', splitter)
|
137
|
+
first_sentence = first_sentence.replace(' were ', splitter)
|
138
|
+
first_sentence = first_sentence.replace(' appears ', splitter)
|
139
|
+
first_sentence = first_sentence.replace(' occurs ', splitter)
|
140
|
+
first_sentence = first_sentence.replace(' stands for ', splitter)
|
141
|
+
first_sentence = first_sentence.replace(' belongs to ', splitter)
|
142
|
+
first_sentence = first_sentence.replace(' exists ',
|
143
|
+
splitter) # only for CID=11443
|
144
|
+
first_sentence = first_sentence.replace(' has been used in trials ',
|
145
|
+
splitter)
|
146
|
+
first_sentence = first_sentence.replace(' has been investigated ',
|
147
|
+
splitter)
|
148
|
+
first_sentence = first_sentence.replace(' has many uses ', splitter)
|
149
|
+
|
150
|
+
if splitter in first_sentence:
|
151
|
+
extracted_name = first_sentence.split(splitter, 1)[0]
|
152
|
+
elif first_sentence.startswith(name_raw):
|
153
|
+
extracted_name = name_raw
|
154
|
+
elif name_raw in first_sentence:
|
155
|
+
extracted_name = name_raw
|
156
|
+
extracted_name = None
|
157
|
+
print("=====", name_raw)
|
158
|
+
print("first sentence: ", first_sentence)
|
159
|
+
else:
|
160
|
+
extracted_name = None
|
161
|
+
|
162
|
+
if extracted_name is not None:
|
163
|
+
extracted_description = description.replace(extracted_name,
|
164
|
+
replaced_words)
|
165
|
+
else:
|
166
|
+
extracted_description = description
|
167
|
+
|
168
|
+
return extracted_name, extracted_description, first_sentence
|
169
|
+
|
170
|
+
|
171
|
+
class MoleculeGPTDataset(InMemoryDataset):
|
172
|
+
r"""The dataset from the `"MoleculeGPT: Instruction Following Large
|
173
|
+
Language Models for Molecular Property Prediction"
|
174
|
+
<https://ai4d3.github.io/papers/34.pdf>`_ paper.
|
175
|
+
|
176
|
+
Args:
|
177
|
+
root (str): Root directory where the dataset should be saved.
|
178
|
+
transform (callable, optional): A function/transform that takes in an
|
179
|
+
:obj:`torch_geometric.data.Data` object and returns a transformed
|
180
|
+
version. The data object will be transformed before every access.
|
181
|
+
(default: :obj:`None`)
|
182
|
+
pre_transform (callable, optional): A function/transform that takes in
|
183
|
+
an :obj:`torch_geometric.data.Data` object and returns a
|
184
|
+
transformed version. The data object will be transformed before
|
185
|
+
being saved to disk. (default: :obj:`None`)
|
186
|
+
pre_filter (callable, optional): A function that takes in an
|
187
|
+
:obj:`torch_geometric.data.Data` object and returns a boolean
|
188
|
+
value, indicating whether the data object should be included in the
|
189
|
+
final dataset. (default: :obj:`None`)
|
190
|
+
force_reload (bool, optional): Whether to re-process the dataset.
|
191
|
+
(default: :obj:`False`)
|
192
|
+
total_page_num (int, optional): The number of pages from PubChem.
|
193
|
+
(default: :obj:`10`)
|
194
|
+
total_block_num (int, optional): The blocks of SDF files from PubChem.
|
195
|
+
(default: :obj:`1`)
|
196
|
+
"""
|
197
|
+
description_url = (
|
198
|
+
'https://pubchem.ncbi.nlm.nih.gov/rest/pug_view/annotations/'
|
199
|
+
'heading/json?heading_type=Compound&heading=Record+Description&page={}'
|
200
|
+
)
|
201
|
+
compound_url = ('https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/'
|
202
|
+
'CURRENT-Full/SDF')
|
203
|
+
|
204
|
+
def __init__(
|
205
|
+
self,
|
206
|
+
root: str,
|
207
|
+
transform: Optional[Callable] = None,
|
208
|
+
pre_transform: Optional[Callable] = None,
|
209
|
+
pre_filter: Optional[Callable] = None,
|
210
|
+
force_reload: bool = False,
|
211
|
+
total_page_num: int = 10,
|
212
|
+
total_block_num: int = 1,
|
213
|
+
):
|
214
|
+
self.total_page_num = total_page_num
|
215
|
+
self.total_block_num = total_block_num
|
216
|
+
|
217
|
+
super().__init__(root, transform, pre_transform, pre_filter,
|
218
|
+
force_reload=force_reload)
|
219
|
+
self.load(self.processed_paths[0])
|
220
|
+
|
221
|
+
@property
|
222
|
+
def raw_file_names(self) -> List[str]:
|
223
|
+
return ['pubchem.csv']
|
224
|
+
|
225
|
+
@property
|
226
|
+
def processed_file_names(self) -> List[str]:
|
227
|
+
return ['data.pt']
|
228
|
+
|
229
|
+
def download(self) -> None:
|
230
|
+
# Step 01. Extract description
|
231
|
+
step1_folder = f"{self.raw_dir}/step_01_PubChemSTM_description"
|
232
|
+
if not os.path.exists(step1_folder):
|
233
|
+
os.makedirs(step1_folder)
|
234
|
+
valid_CID_set = set()
|
235
|
+
CID2name_raw, CID2name_extracted = defaultdict(list), defaultdict(
|
236
|
+
list)
|
237
|
+
CID2text_raw, CID2text_extracted = defaultdict(list), defaultdict(
|
238
|
+
list)
|
239
|
+
|
240
|
+
for page_index in tqdm(range(self.total_page_num)):
|
241
|
+
page_num = page_index + 1
|
242
|
+
f_out = open(
|
243
|
+
f"{step1_folder}/Compound_description_{page_num}.txt", "w")
|
244
|
+
|
245
|
+
description_data = requests.get(
|
246
|
+
self.description_url.format(page_num)).json()
|
247
|
+
|
248
|
+
description_data = description_data["Annotations"]
|
249
|
+
assert description_data["Page"] == page_num
|
250
|
+
|
251
|
+
record_list = description_data["Annotation"]
|
252
|
+
|
253
|
+
for record in record_list:
|
254
|
+
try:
|
255
|
+
CID = record["LinkedRecords"]["CID"][0]
|
256
|
+
if "Name" in record:
|
257
|
+
name_raw = record["Name"]
|
258
|
+
CID2name_raw[CID].append(name_raw)
|
259
|
+
else:
|
260
|
+
name_raw = None
|
261
|
+
|
262
|
+
data_list = record["Data"]
|
263
|
+
for data in data_list:
|
264
|
+
description = data["Value"]["StringWithMarkup"][0][
|
265
|
+
"String"].strip()
|
266
|
+
|
267
|
+
extracted_name, extracted_description, _ = extract_name( # noqa: E501
|
268
|
+
name_raw, description)
|
269
|
+
if extracted_name is not None:
|
270
|
+
CID2name_extracted[CID].append(extracted_name)
|
271
|
+
|
272
|
+
CID2text_raw[CID].append(description)
|
273
|
+
CID2text_extracted[CID].append(
|
274
|
+
extracted_description)
|
275
|
+
|
276
|
+
valid_CID_set.add(CID)
|
277
|
+
f_out.write(f"{CID}\n")
|
278
|
+
f_out.write(f"{extracted_description}\n\n")
|
279
|
+
except Exception:
|
280
|
+
continue
|
281
|
+
|
282
|
+
valid_CID_list = sorted(list(valid_CID_set))
|
283
|
+
print(f"Total CID (with raw name) {len(CID2name_raw)}")
|
284
|
+
print(f"Total CID (with extracted name) {len(CID2name_extracted)}")
|
285
|
+
print(f"Total CID {len(valid_CID_list)}")
|
286
|
+
|
287
|
+
with open(f"{self.raw_dir}/CID2name_raw.json", "w") as f:
|
288
|
+
json.dump(CID2name_raw, f)
|
289
|
+
|
290
|
+
with open(f"{self.raw_dir}/CID2name.json", "w") as f:
|
291
|
+
json.dump(CID2name_extracted, f)
|
292
|
+
|
293
|
+
with open(f"{self.raw_dir}/CID2text_raw.json", "w") as f:
|
294
|
+
json.dump(CID2text_raw, f)
|
295
|
+
|
296
|
+
with open(f"{self.raw_dir}/CID2text.json", "w") as f:
|
297
|
+
json.dump(CID2text_extracted, f)
|
298
|
+
|
299
|
+
# Step 02. Download SDF Files
|
300
|
+
step2_folder = f"{self.raw_dir}/step_02_PubChemSTM_SDF"
|
301
|
+
if not os.path.exists(step2_folder):
|
302
|
+
for block_id in tqdm(range(self.total_block_num)):
|
303
|
+
block_size = 500000
|
304
|
+
l_id = block_id * block_size + 1
|
305
|
+
r_id = (block_id + 1) * block_size
|
306
|
+
|
307
|
+
compound_file_name = f"Compound_{l_id:09d}_{r_id:09d}.sdf.gz"
|
308
|
+
download_url(f"{self.compound_url}/{compound_file_name}",
|
309
|
+
step2_folder)
|
310
|
+
|
311
|
+
def process(self, use_mp: bool = False) -> None:
|
312
|
+
try:
|
313
|
+
from rdkit import Chem
|
314
|
+
from rdkit.Chem.rdchem import BondType as BT
|
315
|
+
WITH_RDKIT = True
|
316
|
+
|
317
|
+
except ImportError:
|
318
|
+
WITH_RDKIT = False
|
319
|
+
|
320
|
+
if not WITH_RDKIT:
|
321
|
+
print(("Using a pre-processed version of the dataset. Please "
|
322
|
+
"install 'rdkit' to alternatively process the raw data."),
|
323
|
+
file=sys.stderr)
|
324
|
+
|
325
|
+
data_list = fs.torch_load(self.raw_paths[0])
|
326
|
+
data_list = [Data(**data_dict) for data_dict in data_list]
|
327
|
+
|
328
|
+
if self.pre_filter is not None:
|
329
|
+
data_list = [d for d in data_list if self.pre_filter(d)]
|
330
|
+
|
331
|
+
if self.pre_transform is not None:
|
332
|
+
data_list = [self.pre_transform(d) for d in data_list]
|
333
|
+
|
334
|
+
self.save(data_list, self.processed_paths[0])
|
335
|
+
return
|
336
|
+
|
337
|
+
# Step 03. Filter out SDF
|
338
|
+
step2_folder = f"{self.raw_dir}/step_02_PubChemSTM_SDF"
|
339
|
+
step3_folder = f"{self.raw_dir}/step_03_PubChemSTM_filtered"
|
340
|
+
if not os.path.exists(step3_folder):
|
341
|
+
os.makedirs(step3_folder)
|
342
|
+
with open(f"{self.raw_dir}/CID2text.json") as f:
|
343
|
+
CID2text = json.load(f)
|
344
|
+
target_CID_list = set(CID2text.keys())
|
345
|
+
|
346
|
+
block_size = 500000
|
347
|
+
|
348
|
+
def extract_one_SDF_file(block_id: int) -> None:
|
349
|
+
valid_mol_count = 0
|
350
|
+
|
351
|
+
writer = Chem.SDWriter(
|
352
|
+
f'{step3_folder}/filtered_{block_id}.sdf')
|
353
|
+
l_id = block_id * block_size + 1
|
354
|
+
r_id = (block_id + 1) * block_size
|
355
|
+
|
356
|
+
compound_file_name = f"Compound_{l_id:09d}_{r_id:09d}.sdf.gz"
|
357
|
+
gzip_loader = gzip.open(f"{step2_folder}/{compound_file_name}")
|
358
|
+
suppl = Chem.ForwardSDMolSupplier(gzip_loader)
|
359
|
+
|
360
|
+
for mol in tqdm(suppl):
|
361
|
+
if mol is None:
|
362
|
+
continue
|
363
|
+
cid = mol.GetProp("PUBCHEM_COMPOUND_CID")
|
364
|
+
|
365
|
+
if cid not in target_CID_list:
|
366
|
+
continue
|
367
|
+
|
368
|
+
writer.write(mol)
|
369
|
+
valid_mol_count += 1
|
370
|
+
|
371
|
+
print(f"block id: {block_id}\nfound {valid_mol_count}\n\n")
|
372
|
+
sys.stdout.flush()
|
373
|
+
return
|
374
|
+
|
375
|
+
if use_mp:
|
376
|
+
num_process = multiprocessing.cpu_count()
|
377
|
+
print(f"{num_process} CPUs")
|
378
|
+
num_process = 8
|
379
|
+
p = Pool(num_process)
|
380
|
+
|
381
|
+
block_id_list = np.arange(self.total_block_num)
|
382
|
+
with p:
|
383
|
+
p.map(extract_one_SDF_file, block_id_list)
|
384
|
+
else:
|
385
|
+
for block_id in range(self.total_block_num):
|
386
|
+
extract_one_SDF_file(block_id)
|
387
|
+
|
388
|
+
# Step 04. Merge SDF
|
389
|
+
with open(f"{self.raw_dir}/CID2text.json") as f:
|
390
|
+
CID2text = json.load(f)
|
391
|
+
target_CID_list = set(CID2text.keys())
|
392
|
+
print(f'The length of target_CID_list: {len(target_CID_list)}')
|
393
|
+
|
394
|
+
writer = Chem.SDWriter(f'{self.raw_dir}/molecules.sdf')
|
395
|
+
|
396
|
+
found_CID_set = set()
|
397
|
+
for block_id in range(self.total_block_num + 1):
|
398
|
+
compound_file_path = f"{step3_folder}/filtered_{block_id}.sdf"
|
399
|
+
try:
|
400
|
+
suppl = Chem.SDMolSupplier(compound_file_path)
|
401
|
+
|
402
|
+
for mol in tqdm(suppl):
|
403
|
+
writer.write(mol)
|
404
|
+
cid = mol.GetProp("PUBCHEM_COMPOUND_CID")
|
405
|
+
found_CID_set.add(cid)
|
406
|
+
except Exception:
|
407
|
+
print(f"block id: {block_id} with 0 valid SDF file")
|
408
|
+
continue
|
409
|
+
|
410
|
+
print(f"In total: {len(found_CID_set)} molecules")
|
411
|
+
|
412
|
+
# Step 05. Convert to PyG data format
|
413
|
+
types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'F': 4, 'Unknow': 5}
|
414
|
+
bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
|
415
|
+
|
416
|
+
data_list = []
|
417
|
+
# Real data
|
418
|
+
CID2text_file = f'{self.raw_dir}/CID2text.json'
|
419
|
+
|
420
|
+
with open(CID2text_file) as f:
|
421
|
+
CID2text_data = json.load(f)
|
422
|
+
|
423
|
+
suppl = Chem.SDMolSupplier(f'{self.raw_dir}/molecules.sdf')
|
424
|
+
|
425
|
+
llm = LLM(
|
426
|
+
# model_name='lmsys/vicuna-7b-v1.5',
|
427
|
+
model_name='TinyLlama/TinyLlama-1.1B-Chat-v0.1',
|
428
|
+
num_params=1,
|
429
|
+
dtype=torch.bfloat16,
|
430
|
+
)
|
431
|
+
prompt = ("Propose a question regarding the molecule '∼' "
|
432
|
+
"whose answer is: {}:")
|
433
|
+
for mol in tqdm(suppl):
|
434
|
+
if mol.HasProp('PUBCHEM_COMPOUND_CID'):
|
435
|
+
CID = mol.GetProp("PUBCHEM_COMPOUND_CID")
|
436
|
+
CAN_SMILES = mol.GetProp("PUBCHEM_OPENEYE_CAN_SMILES")
|
437
|
+
|
438
|
+
m: Chem.Mol = Chem.MolFromSmiles(CAN_SMILES)
|
439
|
+
if m is None:
|
440
|
+
continue
|
441
|
+
RDKit_CAN_SMILES = Chem.MolToSmiles(m)
|
442
|
+
|
443
|
+
ground_truth = CID2text_data[CID][0]
|
444
|
+
|
445
|
+
instruction = llm.inference([prompt.format(ground_truth)])[0]
|
446
|
+
|
447
|
+
x: torch.Tensor = torch.tensor([
|
448
|
+
types[atom.GetSymbol()] if atom.GetSymbol() in types else 5
|
449
|
+
for atom in m.GetAtoms() # type: ignore
|
450
|
+
])
|
451
|
+
x = one_hot(x, num_classes=len(types), dtype=torch.float)
|
452
|
+
|
453
|
+
rows, cols, edge_types = [], [], []
|
454
|
+
for bond in m.GetBonds(): # type: ignore
|
455
|
+
i, j = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
|
456
|
+
edge_types += [bonds[bond.GetBondType()]] * 2
|
457
|
+
rows += [i, j]
|
458
|
+
cols += [j, i]
|
459
|
+
|
460
|
+
edge_index = torch.tensor([rows, cols], dtype=torch.long)
|
461
|
+
edge_type = torch.tensor(edge_types, dtype=torch.long)
|
462
|
+
edge_attr = one_hot(edge_type, num_classes=len(bonds))
|
463
|
+
|
464
|
+
data = Data(
|
465
|
+
x=x,
|
466
|
+
edge_index=edge_index,
|
467
|
+
edge_attr=edge_attr,
|
468
|
+
smiles=RDKit_CAN_SMILES,
|
469
|
+
instruction=instruction,
|
470
|
+
y=ground_truth,
|
471
|
+
)
|
472
|
+
|
473
|
+
if self.pre_filter is not None and not self.pre_filter(data):
|
474
|
+
continue
|
475
|
+
if self.pre_transform is not None:
|
476
|
+
data = self.pre_transform(data)
|
477
|
+
|
478
|
+
data_list.append(data)
|
479
|
+
|
480
|
+
self.save(data_list, self.processed_paths[0])
|