pyg-nightly 2.7.0.dev20241114__py3-none-any.whl → 2.7.0.dev20241119__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20241114.dist-info → pyg_nightly-2.7.0.dev20241119.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20241114.dist-info → pyg_nightly-2.7.0.dev20241119.dist-info}/RECORD +5 -5
- torch_geometric/__init__.py +1 -1
- torch_geometric/loader/neighbor_loader.py +1 -1
- {pyg_nightly-2.7.0.dev20241114.dist-info → pyg_nightly-2.7.0.dev20241119.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20241114.dist-info → pyg_nightly-2.7.0.dev20241119.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20241119
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,4 +1,4 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=spxW7Bk1ADYtDbAY5o7hc4aHzY-HMhp_JzJaHacQX30,1904
|
2
2
|
torch_geometric/_compile.py,sha256=f-WQeH4VLi5Hn9lrgztFUCSrN_FImjhQa6BxFzcYC38,1338
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
@@ -273,7 +273,7 @@ torch_geometric/loader/imbalanced_sampler.py,sha256=clPERglHRk5SyeFevDrgezYFl7ir
|
|
273
273
|
torch_geometric/loader/link_loader.py,sha256=xX9C6c3K5oWAcjMygeDOdxv1mzkP8ePideehsLaDu-w,16207
|
274
274
|
torch_geometric/loader/link_neighbor_loader.py,sha256=CWv1lO_1Anml8kB60-WG4m_AK1rvqP1jwROV6tHWivo,14383
|
275
275
|
torch_geometric/loader/mixin.py,sha256=R4pWv18hDADa-v1u9xGD8U4DzW_B1i9Fu4LywZLK16Y,10922
|
276
|
-
torch_geometric/loader/neighbor_loader.py,sha256=
|
276
|
+
torch_geometric/loader/neighbor_loader.py,sha256=vnLn_RhBKTux5h8pi0vzj0d7JPoOpLA3n3vjyIWv9lo,12452
|
277
277
|
torch_geometric/loader/neighbor_sampler.py,sha256=mraVFXIIGctYot4Xr2VOAhCKAOQyW2gP9KROf7g6tcc,8497
|
278
278
|
torch_geometric/loader/node_loader.py,sha256=g_kV5N0tO6eMSFPc5fdbzfHr4COAeKVJi7FEq52f4zc,11848
|
279
279
|
torch_geometric/loader/prefetch.py,sha256=p1mr54TL4nx3Ea0fBy0JulGYJ8Hq4_9rsiNioZsIW-4,3211
|
@@ -618,6 +618,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
|
|
618
618
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
619
619
|
torch_geometric/visualization/graph.py,sha256=ZuLPL92yGRi7lxlqsUPwL_EVVXF7P2kMcveTtW79vpA,4784
|
620
620
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
621
|
-
pyg_nightly-2.7.0.
|
622
|
-
pyg_nightly-2.7.0.
|
623
|
-
pyg_nightly-2.7.0.
|
621
|
+
pyg_nightly-2.7.0.dev20241119.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
622
|
+
pyg_nightly-2.7.0.dev20241119.dist-info/METADATA,sha256=3Y-GTdZXsDzzOxIrxa35EwttZ_dPAwF2jkLotBJ9ubg,62979
|
623
|
+
pyg_nightly-2.7.0.dev20241119.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20241119'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
@@ -14,7 +14,7 @@ class NeighborLoader(NodeLoader):
|
|
14
14
|
This loader allows for mini-batch training of GNNs on large-scale graphs
|
15
15
|
where full-batch training is not feasible.
|
16
16
|
|
17
|
-
More specifically, :obj:`num_neighbors` denotes how
|
17
|
+
More specifically, :obj:`num_neighbors` denotes how many neighbors are
|
18
18
|
sampled for each node in each iteration.
|
19
19
|
:class:`~torch_geometric.loader.NeighborLoader` takes in this list of
|
20
20
|
:obj:`num_neighbors` and iteratively samples :obj:`num_neighbors[i]` for
|
File without changes
|