pyg-nightly 2.7.0.dev20241020__py3-none-any.whl → 2.7.0.dev20241024__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {pyg_nightly-2.7.0.dev20241020.dist-info → pyg_nightly-2.7.0.dev20241024.dist-info}/METADATA +1 -1
- {pyg_nightly-2.7.0.dev20241020.dist-info → pyg_nightly-2.7.0.dev20241024.dist-info}/RECORD +10 -10
- torch_geometric/__init__.py +1 -1
- torch_geometric/config_mixin.py +1 -1
- torch_geometric/metrics/link_pred.py +2 -2
- torch_geometric/nn/conv/rgcn_conv.py +2 -1
- torch_geometric/transforms/add_positional_encoding.py +1 -1
- torch_geometric/transforms/mask.py +5 -1
- torch_geometric/visualization/graph.py +2 -3
- {pyg_nightly-2.7.0.dev20241020.dist-info → pyg_nightly-2.7.0.dev20241024.dist-info}/WHEEL +0 -0
{pyg_nightly-2.7.0.dev20241020.dist-info → pyg_nightly-2.7.0.dev20241024.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyg-nightly
|
3
|
-
Version: 2.7.0.
|
3
|
+
Version: 2.7.0.dev20241024
|
4
4
|
Summary: Graph Neural Network Library for PyTorch
|
5
5
|
Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
|
6
6
|
Author-email: Matthias Fey <matthias@pyg.org>
|
@@ -1,8 +1,8 @@
|
|
1
|
-
torch_geometric/__init__.py,sha256=
|
1
|
+
torch_geometric/__init__.py,sha256=g4Tn305gIhDL9VX-w7YAYra9E4Katkd2SeK7gDhEEA8,1904
|
2
2
|
torch_geometric/_compile.py,sha256=REjj1_qX8YBrva6iqr3AsNiDueTAy2BhLZkdezKL2MY,1322
|
3
3
|
torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
|
4
4
|
torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
|
5
|
-
torch_geometric/config_mixin.py,sha256=
|
5
|
+
torch_geometric/config_mixin.py,sha256=DGQXStKNiPp4iBvtx7aVoofWcUSuVKEHdG5WUL2oNJs,4230
|
6
6
|
torch_geometric/config_store.py,sha256=zdMzlgBpUmBkPovpYQh5fMNwTZLDq2OneqX47QEx7zk,16818
|
7
7
|
torch_geometric/debug.py,sha256=cLyH9OaL2v7POyW-80b19w-ctA7a_5EZsS4aUF1wc2U,1295
|
8
8
|
torch_geometric/deprecation.py,sha256=dWRymDIUkUVI2MeEmBG5WF4R6jObZeseSBV9G6FNfjc,858
|
@@ -283,7 +283,7 @@ torch_geometric/loader/temporal_dataloader.py,sha256=AQ2QFeiXKbPp6I8sUeE8H7br-1_
|
|
283
283
|
torch_geometric/loader/utils.py,sha256=f27mczQ7fEP2HpTsJGJxKS0slPu0j8zTba3jP8ViNck,14901
|
284
284
|
torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
|
285
285
|
torch_geometric/metrics/__init__.py,sha256=u5mgNci0ayGwQMnSyjXZqYci_KRLYppzlDfE5finZeE,331
|
286
|
-
torch_geometric/metrics/link_pred.py,sha256
|
286
|
+
torch_geometric/metrics/link_pred.py,sha256=-Ux2JquMkJCJ7ZxbZ1CuAyu8zRk6R_pVEYMtGEnuK8Y,8127
|
287
287
|
torch_geometric/nn/__init__.py,sha256=RrWRzEoqtR3lsO2lAzYXboLPb3uYEX2z3tLxiBIVWjc,847
|
288
288
|
torch_geometric/nn/data_parallel.py,sha256=lDAxRi83UNuzAQSj3eu9K2sQheOIU6wqR5elS6oDs90,4764
|
289
289
|
torch_geometric/nn/encoding.py,sha256=QNjwWczYExZ1wRGBmpuqYbn6tB7NC4BU-DEgzjhcZqw,3115
|
@@ -377,7 +377,7 @@ torch_geometric/nn/conv/ppf_conv.py,sha256=F1dufECswv1fQvMtVVuFhMwPgbOJDHDOLYvF4
|
|
377
377
|
torch_geometric/nn/conv/propagate.jinja,sha256=sMbrOaZ7_pF8TREhfjWf3uJ5zYOaANlcZNHHnsabh-0,7374
|
378
378
|
torch_geometric/nn/conv/res_gated_graph_conv.py,sha256=JzwfIlRhopZV0d_OxDKfc9cvqFT5YhBKSVIPd9YpjiY,5217
|
379
379
|
torch_geometric/nn/conv/rgat_conv.py,sha256=MkDrJIg6fFDbgDi4ibBVyW53MYH3f8rEtX1wmmQEpls,22863
|
380
|
-
torch_geometric/nn/conv/rgcn_conv.py,sha256=
|
380
|
+
torch_geometric/nn/conv/rgcn_conv.py,sha256=LU3SQ3M4Rs3Yv1dqpsaIp9GxiZRAZxHy3oXGMKopU7U,15700
|
381
381
|
torch_geometric/nn/conv/sage_conv.py,sha256=21pJmDh-sK4u4cs9lXaZk45sD9Gwoci2E1xpHf5a98c,5812
|
382
382
|
torch_geometric/nn/conv/sg_conv.py,sha256=3aCbI6bZzNDr7dZ2Q7WmJHPWouNiqSeiODx2EmKG7QY,4543
|
383
383
|
torch_geometric/nn/conv/signed_conv.py,sha256=Q67wZYhmHpZryVYAUv1ycHT1XfVC6U-EUG1uszbm2pU,6190
|
@@ -507,7 +507,7 @@ torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS
|
|
507
507
|
torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
|
508
508
|
torch_geometric/transforms/__init__.py,sha256=9HElLNLbIRgcOVRVbFcVfMwfRsemPAaRFeJdgz2qWmQ,4251
|
509
509
|
torch_geometric/transforms/add_metapaths.py,sha256=GabaPRvUnpFrZJsxLMUBY2Egzx94GTgsMxegL_qTtbk,14239
|
510
|
-
torch_geometric/transforms/add_positional_encoding.py,sha256=
|
510
|
+
torch_geometric/transforms/add_positional_encoding.py,sha256=tuilyubAn3yeyz8mvFc5zxXTlNzh8okKzG9AE2lPG1Q,6049
|
511
511
|
torch_geometric/transforms/add_remaining_self_loops.py,sha256=ItU5FAcE-mkbp_wqTLkRhv0RShR5JVr8vr9d5xv3_Ak,2085
|
512
512
|
torch_geometric/transforms/add_self_loops.py,sha256=No8-tMqERQdWVHwEOaYr9aeg1A_RLisiidEy-1wzoV8,2024
|
513
513
|
torch_geometric/transforms/base_transform.py,sha256=5y4X5JmpKrJsj9XQ8v_CYPcDB83pq7b1g5RLjeBrxWg,1298
|
@@ -532,7 +532,7 @@ torch_geometric/transforms/line_graph.py,sha256=LjhPOs45N_cFWsFseMxYZthwuAjbrE5A
|
|
532
532
|
torch_geometric/transforms/linear_transformation.py,sha256=PFGCn-91Lyf3t6Gf9lfdiKBhVPXgWkiK5elXWdtfI84,1997
|
533
533
|
torch_geometric/transforms/local_cartesian.py,sha256=oF18aDM4i38E8OSMJOgRrHFpalo3cz00N-k_ak5o5L8,2144
|
534
534
|
torch_geometric/transforms/local_degree_profile.py,sha256=4haxPEyKKo4qK869jPW0bAwZNOFdlPzdUEjqY2ApKd0,1480
|
535
|
-
torch_geometric/transforms/mask.py,sha256=
|
535
|
+
torch_geometric/transforms/mask.py,sha256=acFjlAsaT-LyThyEM_S_8ghhqotNPjQrhkUAxXw5a9Q,4838
|
536
536
|
torch_geometric/transforms/node_property_split.py,sha256=nwK8PT-xWBc4NDIc20ZAK1-S-2SHPvZ2LqIe6ISf-zc,6075
|
537
537
|
torch_geometric/transforms/normalize_features.py,sha256=1TCoruyVNLbrD3xuZv4V98rwGPvp_C1xKTqCFnQS6R0,1028
|
538
538
|
torch_geometric/transforms/normalize_rotation.py,sha256=S_r1G5OtBlCjAmP8plM6m2qoM52J64tv7vGQPIvD8kY,1782
|
@@ -616,8 +616,8 @@ torch_geometric/utils/smiles.py,sha256=4xTW56OWqvQcM5i2LEvsESAIvd2n0I17n9tvarHok
|
|
616
616
|
torch_geometric/utils/sparse.py,sha256=uYd0oPrp5XN0c2Zc15f-00rhhVMfLnRMqNcqcmILNKQ,25519
|
617
617
|
torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5nUAUjw,6222
|
618
618
|
torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
|
619
|
-
torch_geometric/visualization/graph.py,sha256=
|
619
|
+
torch_geometric/visualization/graph.py,sha256=AGKqbtTdL14w7xIhy6n3g4bpCOnujKt-pXHCNzovxB4,4784
|
620
620
|
torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
|
621
|
-
pyg_nightly-2.7.0.
|
622
|
-
pyg_nightly-2.7.0.
|
623
|
-
pyg_nightly-2.7.0.
|
621
|
+
pyg_nightly-2.7.0.dev20241024.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
|
622
|
+
pyg_nightly-2.7.0.dev20241024.dist-info/METADATA,sha256=3aLXdBF8LLU639xOmzeRcg3ldsR1-PaBOOld-2KxtNA,62897
|
623
|
+
pyg_nightly-2.7.0.dev20241024.dist-info/RECORD,,
|
torch_geometric/__init__.py
CHANGED
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
|
|
30
30
|
contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
|
31
31
|
graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
|
32
32
|
|
33
|
-
__version__ = '2.7.0.
|
33
|
+
__version__ = '2.7.0.dev20241024'
|
34
34
|
|
35
35
|
__all__ = [
|
36
36
|
'Index',
|
torch_geometric/config_mixin.py
CHANGED
@@ -83,7 +83,7 @@ def _recursive_from_config(value: Any) -> Any:
|
|
83
83
|
if is_dataclass(value):
|
84
84
|
if getattr(value, '_target_', None):
|
85
85
|
try:
|
86
|
-
cls = _locate_cls(value._target_) # type: ignore
|
86
|
+
cls = _locate_cls(value._target_) # type: ignore
|
87
87
|
except ImportError:
|
88
88
|
pass # Keep the dataclass as it is.
|
89
89
|
else:
|
@@ -78,8 +78,8 @@ class LinkPredMetric(BaseMetric):
|
|
78
78
|
) + 1
|
79
79
|
arange = torch.arange(
|
80
80
|
start=0,
|
81
|
-
end=max_index * pred_index_mat.size(0),
|
82
|
-
step=max_index,
|
81
|
+
end=max_index * pred_index_mat.size(0), # type: ignore
|
82
|
+
step=max_index, # type: ignore
|
83
83
|
device=pred_index_mat.device,
|
84
84
|
).view(-1, 1)
|
85
85
|
flat_pred_index = (pred_index_mat + arange).view(-1)
|
@@ -120,7 +120,8 @@ class RGCNConv(MessagePassing):
|
|
120
120
|
in_channels = (in_channels, in_channels)
|
121
121
|
self.in_channels_l = in_channels[0]
|
122
122
|
|
123
|
-
self._use_segment_matmul_heuristic_output:
|
123
|
+
self._use_segment_matmul_heuristic_output: torch.jit.Attribute(
|
124
|
+
None, Optional[float])
|
124
125
|
|
125
126
|
if num_bases is not None:
|
126
127
|
self.weight = Parameter(
|
@@ -92,7 +92,7 @@ class AddLaplacianEigenvectorPE(BaseTransform):
|
|
92
92
|
from numpy.linalg import eig, eigh
|
93
93
|
eig_fn = eig if not self.is_undirected else eigh
|
94
94
|
|
95
|
-
eig_vals, eig_vecs = eig_fn(L.todense())
|
95
|
+
eig_vals, eig_vecs = eig_fn(L.todense())
|
96
96
|
else:
|
97
97
|
from scipy.sparse.linalg import eigs, eigsh
|
98
98
|
eig_fn = eigs if not self.is_undirected else eigsh
|
@@ -19,7 +19,11 @@ def get_attrs_with_suffix(
|
|
19
19
|
return [key for key in store.keys() if key.endswith(suffix)]
|
20
20
|
|
21
21
|
|
22
|
-
def get_mask_size(
|
22
|
+
def get_mask_size(
|
23
|
+
attr: str,
|
24
|
+
store: BaseStorage,
|
25
|
+
size: Optional[int],
|
26
|
+
) -> Optional[int]:
|
23
27
|
if size is not None:
|
24
28
|
return size
|
25
29
|
return store.num_edges if store.is_edge_attr(attr) else store.num_nodes
|
@@ -140,9 +140,8 @@ def _visualize_graph_via_networkx(
|
|
140
140
|
),
|
141
141
|
)
|
142
142
|
|
143
|
-
|
144
|
-
|
145
|
-
nodes.set_edgecolor('black')
|
143
|
+
nx.draw_networkx_nodes(g, pos, node_size=node_size, node_color='white',
|
144
|
+
margins=0.1, edgecolors='black')
|
146
145
|
nx.draw_networkx_labels(g, pos, font_size=10)
|
147
146
|
|
148
147
|
if path is not None:
|
File without changes
|