pyg-nightly 2.7.0.dev20241020__py3-none-any.whl → 2.7.0.dev20241022__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20241020
3
+ Version: 2.7.0.dev20241022
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,8 +1,8 @@
1
- torch_geometric/__init__.py,sha256=COxryZJpu-rDZpVNkKc3dnicsM_lM7TLh_UerOS8AjQ,1904
1
+ torch_geometric/__init__.py,sha256=fpnVFvmQqAFJrF9U37MJzc0IMSKUGpnPJGsrqVPBuis,1904
2
2
  torch_geometric/_compile.py,sha256=REjj1_qX8YBrva6iqr3AsNiDueTAy2BhLZkdezKL2MY,1322
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
5
- torch_geometric/config_mixin.py,sha256=GxSa_skJpL17H43rriZaeFkhmLzODrQoHHIzD83i-Vk,4244
5
+ torch_geometric/config_mixin.py,sha256=DGQXStKNiPp4iBvtx7aVoofWcUSuVKEHdG5WUL2oNJs,4230
6
6
  torch_geometric/config_store.py,sha256=zdMzlgBpUmBkPovpYQh5fMNwTZLDq2OneqX47QEx7zk,16818
7
7
  torch_geometric/debug.py,sha256=cLyH9OaL2v7POyW-80b19w-ctA7a_5EZsS4aUF1wc2U,1295
8
8
  torch_geometric/deprecation.py,sha256=dWRymDIUkUVI2MeEmBG5WF4R6jObZeseSBV9G6FNfjc,858
@@ -283,7 +283,7 @@ torch_geometric/loader/temporal_dataloader.py,sha256=AQ2QFeiXKbPp6I8sUeE8H7br-1_
283
283
  torch_geometric/loader/utils.py,sha256=f27mczQ7fEP2HpTsJGJxKS0slPu0j8zTba3jP8ViNck,14901
284
284
  torch_geometric/loader/zip_loader.py,sha256=3lt10fD15Rxm1WhWzypswGzCEwUz4h8OLCD1nE15yNg,3843
285
285
  torch_geometric/metrics/__init__.py,sha256=u5mgNci0ayGwQMnSyjXZqYci_KRLYppzlDfE5finZeE,331
286
- torch_geometric/metrics/link_pred.py,sha256=bfP68S_SY0DJb3iUfhr-ZvHZ-INs5RlJvkIDkYzZS8I,8095
286
+ torch_geometric/metrics/link_pred.py,sha256=-Ux2JquMkJCJ7ZxbZ1CuAyu8zRk6R_pVEYMtGEnuK8Y,8127
287
287
  torch_geometric/nn/__init__.py,sha256=RrWRzEoqtR3lsO2lAzYXboLPb3uYEX2z3tLxiBIVWjc,847
288
288
  torch_geometric/nn/data_parallel.py,sha256=lDAxRi83UNuzAQSj3eu9K2sQheOIU6wqR5elS6oDs90,4764
289
289
  torch_geometric/nn/encoding.py,sha256=QNjwWczYExZ1wRGBmpuqYbn6tB7NC4BU-DEgzjhcZqw,3115
@@ -377,7 +377,7 @@ torch_geometric/nn/conv/ppf_conv.py,sha256=F1dufECswv1fQvMtVVuFhMwPgbOJDHDOLYvF4
377
377
  torch_geometric/nn/conv/propagate.jinja,sha256=sMbrOaZ7_pF8TREhfjWf3uJ5zYOaANlcZNHHnsabh-0,7374
378
378
  torch_geometric/nn/conv/res_gated_graph_conv.py,sha256=JzwfIlRhopZV0d_OxDKfc9cvqFT5YhBKSVIPd9YpjiY,5217
379
379
  torch_geometric/nn/conv/rgat_conv.py,sha256=MkDrJIg6fFDbgDi4ibBVyW53MYH3f8rEtX1wmmQEpls,22863
380
- torch_geometric/nn/conv/rgcn_conv.py,sha256=Iz9q3nsACMlsKl8qcQVzAKNKtp44z9DdDm3m67TclrQ,15666
380
+ torch_geometric/nn/conv/rgcn_conv.py,sha256=LU3SQ3M4Rs3Yv1dqpsaIp9GxiZRAZxHy3oXGMKopU7U,15700
381
381
  torch_geometric/nn/conv/sage_conv.py,sha256=21pJmDh-sK4u4cs9lXaZk45sD9Gwoci2E1xpHf5a98c,5812
382
382
  torch_geometric/nn/conv/sg_conv.py,sha256=3aCbI6bZzNDr7dZ2Q7WmJHPWouNiqSeiODx2EmKG7QY,4543
383
383
  torch_geometric/nn/conv/signed_conv.py,sha256=Q67wZYhmHpZryVYAUv1ycHT1XfVC6U-EUG1uszbm2pU,6190
@@ -507,7 +507,7 @@ torch_geometric/testing/feature_store.py,sha256=J6JBIt2XK-t8yG8B4JzXp-aJcVl5jaCS
507
507
  torch_geometric/testing/graph_store.py,sha256=00B7QToCIspYmgN7svQKp1iU-qAzEtrt3VQRFxkHfuk,1044
508
508
  torch_geometric/transforms/__init__.py,sha256=9HElLNLbIRgcOVRVbFcVfMwfRsemPAaRFeJdgz2qWmQ,4251
509
509
  torch_geometric/transforms/add_metapaths.py,sha256=GabaPRvUnpFrZJsxLMUBY2Egzx94GTgsMxegL_qTtbk,14239
510
- torch_geometric/transforms/add_positional_encoding.py,sha256=QPflYTu8XyTtcRIs1dvBRYmhmkrr587lPNkLi94us8o,6065
510
+ torch_geometric/transforms/add_positional_encoding.py,sha256=tuilyubAn3yeyz8mvFc5zxXTlNzh8okKzG9AE2lPG1Q,6049
511
511
  torch_geometric/transforms/add_remaining_self_loops.py,sha256=ItU5FAcE-mkbp_wqTLkRhv0RShR5JVr8vr9d5xv3_Ak,2085
512
512
  torch_geometric/transforms/add_self_loops.py,sha256=No8-tMqERQdWVHwEOaYr9aeg1A_RLisiidEy-1wzoV8,2024
513
513
  torch_geometric/transforms/base_transform.py,sha256=5y4X5JmpKrJsj9XQ8v_CYPcDB83pq7b1g5RLjeBrxWg,1298
@@ -532,7 +532,7 @@ torch_geometric/transforms/line_graph.py,sha256=LjhPOs45N_cFWsFseMxYZthwuAjbrE5A
532
532
  torch_geometric/transforms/linear_transformation.py,sha256=PFGCn-91Lyf3t6Gf9lfdiKBhVPXgWkiK5elXWdtfI84,1997
533
533
  torch_geometric/transforms/local_cartesian.py,sha256=oF18aDM4i38E8OSMJOgRrHFpalo3cz00N-k_ak5o5L8,2144
534
534
  torch_geometric/transforms/local_degree_profile.py,sha256=4haxPEyKKo4qK869jPW0bAwZNOFdlPzdUEjqY2ApKd0,1480
535
- torch_geometric/transforms/mask.py,sha256=Yb-xk_miIGDwrepXDqtlOZ8mucUVp8-fW-o9ZnQjLxA,4813
535
+ torch_geometric/transforms/mask.py,sha256=acFjlAsaT-LyThyEM_S_8ghhqotNPjQrhkUAxXw5a9Q,4838
536
536
  torch_geometric/transforms/node_property_split.py,sha256=nwK8PT-xWBc4NDIc20ZAK1-S-2SHPvZ2LqIe6ISf-zc,6075
537
537
  torch_geometric/transforms/normalize_features.py,sha256=1TCoruyVNLbrD3xuZv4V98rwGPvp_C1xKTqCFnQS6R0,1028
538
538
  torch_geometric/transforms/normalize_rotation.py,sha256=S_r1G5OtBlCjAmP8plM6m2qoM52J64tv7vGQPIvD8kY,1782
@@ -616,8 +616,8 @@ torch_geometric/utils/smiles.py,sha256=4xTW56OWqvQcM5i2LEvsESAIvd2n0I17n9tvarHok
616
616
  torch_geometric/utils/sparse.py,sha256=uYd0oPrp5XN0c2Zc15f-00rhhVMfLnRMqNcqcmILNKQ,25519
617
617
  torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5nUAUjw,6222
618
618
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
619
- torch_geometric/visualization/graph.py,sha256=SvbdVx5Zmuy_WSSA4-WWCkqAcCSHVe84mjMfsEWbZCs,4813
619
+ torch_geometric/visualization/graph.py,sha256=AGKqbtTdL14w7xIhy6n3g4bpCOnujKt-pXHCNzovxB4,4784
620
620
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
621
- pyg_nightly-2.7.0.dev20241020.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
- pyg_nightly-2.7.0.dev20241020.dist-info/METADATA,sha256=eI1mZY8uh4E8jIbEih6kzNauk4IkWxhRO96YkpJAato,62897
623
- pyg_nightly-2.7.0.dev20241020.dist-info/RECORD,,
621
+ pyg_nightly-2.7.0.dev20241022.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
+ pyg_nightly-2.7.0.dev20241022.dist-info/METADATA,sha256=7q-RPBwm6ppVsM5_C9TUTB8fB-ofYoY6aIWJ8vwiIM4,62897
623
+ pyg_nightly-2.7.0.dev20241022.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20241020'
33
+ __version__ = '2.7.0.dev20241022'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -83,7 +83,7 @@ def _recursive_from_config(value: Any) -> Any:
83
83
  if is_dataclass(value):
84
84
  if getattr(value, '_target_', None):
85
85
  try:
86
- cls = _locate_cls(value._target_) # type: ignore[attr-defined]
86
+ cls = _locate_cls(value._target_) # type: ignore
87
87
  except ImportError:
88
88
  pass # Keep the dataclass as it is.
89
89
  else:
@@ -78,8 +78,8 @@ class LinkPredMetric(BaseMetric):
78
78
  ) + 1
79
79
  arange = torch.arange(
80
80
  start=0,
81
- end=max_index * pred_index_mat.size(0),
82
- step=max_index,
81
+ end=max_index * pred_index_mat.size(0), # type: ignore
82
+ step=max_index, # type: ignore
83
83
  device=pred_index_mat.device,
84
84
  ).view(-1, 1)
85
85
  flat_pred_index = (pred_index_mat + arange).view(-1)
@@ -120,7 +120,8 @@ class RGCNConv(MessagePassing):
120
120
  in_channels = (in_channels, in_channels)
121
121
  self.in_channels_l = in_channels[0]
122
122
 
123
- self._use_segment_matmul_heuristic_output: Optional[bool] = None
123
+ self._use_segment_matmul_heuristic_output: torch.jit.Attribute(
124
+ None, Optional[float])
124
125
 
125
126
  if num_bases is not None:
126
127
  self.weight = Parameter(
@@ -92,7 +92,7 @@ class AddLaplacianEigenvectorPE(BaseTransform):
92
92
  from numpy.linalg import eig, eigh
93
93
  eig_fn = eig if not self.is_undirected else eigh
94
94
 
95
- eig_vals, eig_vecs = eig_fn(L.todense()) # type: ignore
95
+ eig_vals, eig_vecs = eig_fn(L.todense())
96
96
  else:
97
97
  from scipy.sparse.linalg import eigs, eigsh
98
98
  eig_fn = eigs if not self.is_undirected else eigsh
@@ -19,7 +19,11 @@ def get_attrs_with_suffix(
19
19
  return [key for key in store.keys() if key.endswith(suffix)]
20
20
 
21
21
 
22
- def get_mask_size(attr: str, store: BaseStorage, size: Optional[int]) -> int:
22
+ def get_mask_size(
23
+ attr: str,
24
+ store: BaseStorage,
25
+ size: Optional[int],
26
+ ) -> Optional[int]:
23
27
  if size is not None:
24
28
  return size
25
29
  return store.num_edges if store.is_edge_attr(attr) else store.num_nodes
@@ -140,9 +140,8 @@ def _visualize_graph_via_networkx(
140
140
  ),
141
141
  )
142
142
 
143
- nodes = nx.draw_networkx_nodes(g, pos, node_size=node_size,
144
- node_color='white', margins=0.1)
145
- nodes.set_edgecolor('black')
143
+ nx.draw_networkx_nodes(g, pos, node_size=node_size, node_color='white',
144
+ margins=0.1, edgecolors='black')
146
145
  nx.draw_networkx_labels(g, pos, font_size=10)
147
146
 
148
147
  if path is not None: