pyg-nightly 2.7.0.dev20241010__py3-none-any.whl → 2.7.0.dev20241020__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20241010
3
+ Version: 2.7.0.dev20241020
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -251,7 +251,7 @@ These GNN layers can be stacked together to create Graph Neural Network models.
251
251
  - **[EGConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.EGConv.html)** from Tailor *et al.*: [Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions](https://arxiv.org/abs/2104.01481) (GNNSys 2021) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/egc.py)\]
252
252
  - **[GATv2Conv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATv2Conv.html)** from Brody *et al.*: [How Attentive are Graph Attention Networks?](https://arxiv.org/abs/2105.14491) (ICLR 2022)
253
253
  - **[TransformerConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.TransformerConv.html)** from Shi *et al.*: [Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification](https://arxiv.org/abs/2009.03509) (CoRR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/unimp_arxiv.py)\]
254
- - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
254
+ - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
255
255
  - **[GraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html)** from, *e.g.*, Morris *et al.*: [Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks](https://arxiv.org/abs/1810.02244) (AAAI 2019)
256
256
  - **[GatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GatedGraphConv.html)** from Li *et al.*: [Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493) (ICLR 2016)
257
257
  - **[ResGatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.ResGatedGraphConv.html)** from Bresson and Laurent: [Residual Gated Graph ConvNets](https://arxiv.org/abs/1711.07553) (CoRR 2017)
@@ -394,7 +394,7 @@ Such application is challenging since the entire graph, its associated features
394
394
  Many state-of-the-art scalability approaches tackle this challenge by sampling neighborhoods for mini-batch training, graph clustering and partitioning, or by using simplified GNN models.
395
395
  These approaches have been implemented in PyG, and can benefit from the above GNN layers, operators and models.
396
396
 
397
- - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_gat.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
397
+ - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
398
398
  - **[ClusterGCN](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.ClusterLoader)** from Chiang *et al.*: [Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](https://arxiv.org/abs/1905.07953) (KDD 2019) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_ppi.py)\]
399
399
  - **[GraphSAINT](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.GraphSAINTSampler)** from Zeng *et al.*: [GraphSAINT: Graph Sampling Based Inductive Learning Method](https://arxiv.org/abs/1907.04931) (ICLR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_saint.py)\]
400
400
 
@@ -1,4 +1,4 @@
1
- torch_geometric/__init__.py,sha256=KCUgJSq3OoXQwxcFdh79xopt7g-S82vrOW6ez2L3tLg,1904
1
+ torch_geometric/__init__.py,sha256=COxryZJpu-rDZpVNkKc3dnicsM_lM7TLh_UerOS8AjQ,1904
2
2
  torch_geometric/_compile.py,sha256=REjj1_qX8YBrva6iqr3AsNiDueTAy2BhLZkdezKL2MY,1322
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
@@ -274,7 +274,7 @@ torch_geometric/loader/link_loader.py,sha256=xX9C6c3K5oWAcjMygeDOdxv1mzkP8ePidee
274
274
  torch_geometric/loader/link_neighbor_loader.py,sha256=CWv1lO_1Anml8kB60-WG4m_AK1rvqP1jwROV6tHWivo,14383
275
275
  torch_geometric/loader/mixin.py,sha256=R4pWv18hDADa-v1u9xGD8U4DzW_B1i9Fu4LywZLK16Y,10922
276
276
  torch_geometric/loader/neighbor_loader.py,sha256=q5i7AUzBtMgbRz2oHyNH_3u_KvjBzDP8VzHrXamtbds,12452
277
- torch_geometric/loader/neighbor_sampler.py,sha256=FvG4SSxUHPVRDU5fjTMOmQ1cpECLCQxo8HOt79hurWI,8513
277
+ torch_geometric/loader/neighbor_sampler.py,sha256=mraVFXIIGctYot4Xr2VOAhCKAOQyW2gP9KROf7g6tcc,8497
278
278
  torch_geometric/loader/node_loader.py,sha256=g_kV5N0tO6eMSFPc5fdbzfHr4COAeKVJi7FEq52f4zc,11848
279
279
  torch_geometric/loader/prefetch.py,sha256=p1mr54TL4nx3Ea0fBy0JulGYJ8Hq4_9rsiNioZsIW-4,3211
280
280
  torch_geometric/loader/random_node_loader.py,sha256=rCmRXYv70SPxBo-Oh049eFEWEZDV7FmlRPzmjcoirXQ,2196
@@ -618,6 +618,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
618
618
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
619
619
  torch_geometric/visualization/graph.py,sha256=SvbdVx5Zmuy_WSSA4-WWCkqAcCSHVe84mjMfsEWbZCs,4813
620
620
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
621
- pyg_nightly-2.7.0.dev20241010.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
- pyg_nightly-2.7.0.dev20241010.dist-info/METADATA,sha256=aRuVSXDDXiZn2ZDyo6sKBfVE9lHB22P52bj7lolRD0k,63018
623
- pyg_nightly-2.7.0.dev20241010.dist-info/RECORD,,
621
+ pyg_nightly-2.7.0.dev20241020.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
+ pyg_nightly-2.7.0.dev20241020.dist-info/METADATA,sha256=eI1mZY8uh4E8jIbEih6kzNauk4IkWxhRO96YkpJAato,62897
623
+ pyg_nightly-2.7.0.dev20241020.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20241010'
33
+ __version__ = '2.7.0.dev20241020'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -72,9 +72,9 @@ class NeighborSampler(torch.utils.data.DataLoader):
72
72
  `examples/reddit.py
73
73
  <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
74
74
  reddit.py>`_ or
75
- `examples/ogbn_products_sage.py
75
+ `examples/ogbn_train.py
76
76
  <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
77
- ogbn_products_sage.py>`_.
77
+ ogbn_train.py>`_.
78
78
 
79
79
  Args:
80
80
  edge_index (Tensor or SparseTensor): A :obj:`torch.LongTensor` or a