pyg-nightly 2.7.0.dev20241009__py3-none-any.whl → 2.8.0.dev20251207__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of pyg-nightly might be problematic. Click here for more details.

Files changed (228) hide show
  1. {pyg_nightly-2.7.0.dev20241009.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/METADATA +77 -53
  2. {pyg_nightly-2.7.0.dev20241009.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/RECORD +226 -189
  3. {pyg_nightly-2.7.0.dev20241009.dist-info → pyg_nightly-2.8.0.dev20251207.dist-info}/WHEEL +1 -1
  4. pyg_nightly-2.8.0.dev20251207.dist-info/licenses/LICENSE +19 -0
  5. torch_geometric/__init__.py +14 -2
  6. torch_geometric/_compile.py +9 -3
  7. torch_geometric/_onnx.py +214 -0
  8. torch_geometric/config_mixin.py +5 -3
  9. torch_geometric/config_store.py +1 -1
  10. torch_geometric/contrib/__init__.py +1 -1
  11. torch_geometric/contrib/explain/pgm_explainer.py +1 -1
  12. torch_geometric/data/batch.py +2 -2
  13. torch_geometric/data/collate.py +1 -3
  14. torch_geometric/data/data.py +109 -5
  15. torch_geometric/data/database.py +4 -0
  16. torch_geometric/data/dataset.py +14 -11
  17. torch_geometric/data/extract.py +1 -1
  18. torch_geometric/data/feature_store.py +17 -22
  19. torch_geometric/data/graph_store.py +3 -2
  20. torch_geometric/data/hetero_data.py +139 -7
  21. torch_geometric/data/hypergraph_data.py +2 -2
  22. torch_geometric/data/in_memory_dataset.py +2 -2
  23. torch_geometric/data/lightning/datamodule.py +42 -28
  24. torch_geometric/data/storage.py +9 -1
  25. torch_geometric/datasets/__init__.py +18 -1
  26. torch_geometric/datasets/actor.py +7 -9
  27. torch_geometric/datasets/airfrans.py +15 -17
  28. torch_geometric/datasets/airports.py +8 -10
  29. torch_geometric/datasets/amazon.py +8 -11
  30. torch_geometric/datasets/amazon_book.py +8 -9
  31. torch_geometric/datasets/amazon_products.py +7 -9
  32. torch_geometric/datasets/aminer.py +8 -9
  33. torch_geometric/datasets/aqsol.py +10 -13
  34. torch_geometric/datasets/attributed_graph_dataset.py +8 -10
  35. torch_geometric/datasets/ba_multi_shapes.py +10 -12
  36. torch_geometric/datasets/ba_shapes.py +5 -6
  37. torch_geometric/datasets/city.py +157 -0
  38. torch_geometric/datasets/dbp15k.py +1 -1
  39. torch_geometric/datasets/git_mol_dataset.py +263 -0
  40. torch_geometric/datasets/hgb_dataset.py +2 -2
  41. torch_geometric/datasets/hm.py +1 -1
  42. torch_geometric/datasets/instruct_mol_dataset.py +134 -0
  43. torch_geometric/datasets/md17.py +3 -3
  44. torch_geometric/datasets/medshapenet.py +145 -0
  45. torch_geometric/datasets/modelnet.py +1 -1
  46. torch_geometric/datasets/molecule_gpt_dataset.py +492 -0
  47. torch_geometric/datasets/molecule_net.py +3 -2
  48. torch_geometric/datasets/ppi.py +2 -1
  49. torch_geometric/datasets/protein_mpnn_dataset.py +451 -0
  50. torch_geometric/datasets/qm7.py +1 -1
  51. torch_geometric/datasets/qm9.py +1 -1
  52. torch_geometric/datasets/snap_dataset.py +8 -4
  53. torch_geometric/datasets/tag_dataset.py +462 -0
  54. torch_geometric/datasets/teeth3ds.py +269 -0
  55. torch_geometric/datasets/web_qsp_dataset.py +310 -209
  56. torch_geometric/datasets/wikics.py +2 -1
  57. torch_geometric/deprecation.py +1 -1
  58. torch_geometric/distributed/__init__.py +13 -0
  59. torch_geometric/distributed/dist_loader.py +2 -2
  60. torch_geometric/distributed/partition.py +2 -2
  61. torch_geometric/distributed/rpc.py +3 -3
  62. torch_geometric/edge_index.py +18 -14
  63. torch_geometric/explain/algorithm/attention_explainer.py +219 -29
  64. torch_geometric/explain/algorithm/base.py +2 -2
  65. torch_geometric/explain/algorithm/captum.py +1 -1
  66. torch_geometric/explain/algorithm/captum_explainer.py +2 -1
  67. torch_geometric/explain/algorithm/gnn_explainer.py +406 -69
  68. torch_geometric/explain/algorithm/graphmask_explainer.py +8 -8
  69. torch_geometric/explain/algorithm/pg_explainer.py +305 -47
  70. torch_geometric/explain/explainer.py +2 -2
  71. torch_geometric/explain/explanation.py +87 -3
  72. torch_geometric/explain/metric/faithfulness.py +1 -1
  73. torch_geometric/graphgym/config.py +3 -2
  74. torch_geometric/graphgym/imports.py +15 -4
  75. torch_geometric/graphgym/logger.py +1 -1
  76. torch_geometric/graphgym/loss.py +1 -1
  77. torch_geometric/graphgym/models/encoder.py +2 -2
  78. torch_geometric/graphgym/models/layer.py +1 -1
  79. torch_geometric/graphgym/utils/comp_budget.py +4 -3
  80. torch_geometric/hash_tensor.py +798 -0
  81. torch_geometric/index.py +14 -5
  82. torch_geometric/inspector.py +4 -0
  83. torch_geometric/io/fs.py +5 -4
  84. torch_geometric/llm/__init__.py +9 -0
  85. torch_geometric/llm/large_graph_indexer.py +741 -0
  86. torch_geometric/llm/models/__init__.py +23 -0
  87. torch_geometric/{nn → llm}/models/g_retriever.py +77 -45
  88. torch_geometric/llm/models/git_mol.py +336 -0
  89. torch_geometric/llm/models/glem.py +397 -0
  90. torch_geometric/{nn/nlp → llm/models}/llm.py +179 -31
  91. torch_geometric/llm/models/llm_judge.py +158 -0
  92. torch_geometric/llm/models/molecule_gpt.py +222 -0
  93. torch_geometric/llm/models/protein_mpnn.py +333 -0
  94. torch_geometric/llm/models/sentence_transformer.py +188 -0
  95. torch_geometric/llm/models/txt2kg.py +353 -0
  96. torch_geometric/llm/models/vision_transformer.py +38 -0
  97. torch_geometric/llm/rag_loader.py +154 -0
  98. torch_geometric/llm/utils/__init__.py +10 -0
  99. torch_geometric/llm/utils/backend_utils.py +443 -0
  100. torch_geometric/llm/utils/feature_store.py +169 -0
  101. torch_geometric/llm/utils/graph_store.py +199 -0
  102. torch_geometric/llm/utils/vectorrag.py +125 -0
  103. torch_geometric/loader/cluster.py +4 -4
  104. torch_geometric/loader/ibmb_loader.py +4 -4
  105. torch_geometric/loader/link_loader.py +1 -1
  106. torch_geometric/loader/link_neighbor_loader.py +2 -1
  107. torch_geometric/loader/mixin.py +6 -5
  108. torch_geometric/loader/neighbor_loader.py +1 -1
  109. torch_geometric/loader/neighbor_sampler.py +2 -2
  110. torch_geometric/loader/prefetch.py +3 -2
  111. torch_geometric/loader/temporal_dataloader.py +2 -2
  112. torch_geometric/loader/utils.py +10 -10
  113. torch_geometric/metrics/__init__.py +14 -0
  114. torch_geometric/metrics/link_pred.py +745 -92
  115. torch_geometric/nn/__init__.py +1 -0
  116. torch_geometric/nn/aggr/base.py +1 -1
  117. torch_geometric/nn/aggr/equilibrium.py +1 -1
  118. torch_geometric/nn/aggr/fused.py +1 -1
  119. torch_geometric/nn/aggr/patch_transformer.py +8 -2
  120. torch_geometric/nn/aggr/set_transformer.py +1 -1
  121. torch_geometric/nn/aggr/utils.py +9 -4
  122. torch_geometric/nn/attention/__init__.py +9 -1
  123. torch_geometric/nn/attention/polynormer.py +107 -0
  124. torch_geometric/nn/attention/qformer.py +71 -0
  125. torch_geometric/nn/attention/sgformer.py +99 -0
  126. torch_geometric/nn/conv/__init__.py +2 -0
  127. torch_geometric/nn/conv/appnp.py +1 -1
  128. torch_geometric/nn/conv/cugraph/gat_conv.py +8 -2
  129. torch_geometric/nn/conv/cugraph/rgcn_conv.py +3 -0
  130. torch_geometric/nn/conv/cugraph/sage_conv.py +3 -0
  131. torch_geometric/nn/conv/dna_conv.py +1 -1
  132. torch_geometric/nn/conv/eg_conv.py +7 -7
  133. torch_geometric/nn/conv/gen_conv.py +1 -1
  134. torch_geometric/nn/conv/gravnet_conv.py +2 -1
  135. torch_geometric/nn/conv/hetero_conv.py +2 -1
  136. torch_geometric/nn/conv/meshcnn_conv.py +487 -0
  137. torch_geometric/nn/conv/message_passing.py +5 -4
  138. torch_geometric/nn/conv/rgcn_conv.py +2 -1
  139. torch_geometric/nn/conv/sg_conv.py +1 -1
  140. torch_geometric/nn/conv/spline_conv.py +2 -1
  141. torch_geometric/nn/conv/ssg_conv.py +1 -1
  142. torch_geometric/nn/conv/transformer_conv.py +5 -3
  143. torch_geometric/nn/data_parallel.py +5 -4
  144. torch_geometric/nn/dense/linear.py +0 -20
  145. torch_geometric/nn/encoding.py +17 -3
  146. torch_geometric/nn/fx.py +14 -12
  147. torch_geometric/nn/model_hub.py +2 -15
  148. torch_geometric/nn/models/__init__.py +11 -2
  149. torch_geometric/nn/models/attentive_fp.py +1 -1
  150. torch_geometric/nn/models/attract_repel.py +148 -0
  151. torch_geometric/nn/models/basic_gnn.py +2 -1
  152. torch_geometric/nn/models/captum.py +1 -1
  153. torch_geometric/nn/models/deep_graph_infomax.py +1 -1
  154. torch_geometric/nn/models/dimenet.py +2 -2
  155. torch_geometric/nn/models/dimenet_utils.py +4 -2
  156. torch_geometric/nn/models/gpse.py +1083 -0
  157. torch_geometric/nn/models/graph_unet.py +13 -4
  158. torch_geometric/nn/models/lpformer.py +783 -0
  159. torch_geometric/nn/models/metapath2vec.py +1 -1
  160. torch_geometric/nn/models/mlp.py +4 -2
  161. torch_geometric/nn/models/node2vec.py +1 -1
  162. torch_geometric/nn/models/polynormer.py +206 -0
  163. torch_geometric/nn/models/rev_gnn.py +3 -3
  164. torch_geometric/nn/models/sgformer.py +219 -0
  165. torch_geometric/nn/models/signed_gcn.py +1 -1
  166. torch_geometric/nn/models/visnet.py +2 -2
  167. torch_geometric/nn/norm/batch_norm.py +17 -7
  168. torch_geometric/nn/norm/diff_group_norm.py +7 -2
  169. torch_geometric/nn/norm/graph_norm.py +9 -4
  170. torch_geometric/nn/norm/instance_norm.py +5 -1
  171. torch_geometric/nn/norm/layer_norm.py +15 -7
  172. torch_geometric/nn/norm/msg_norm.py +8 -2
  173. torch_geometric/nn/pool/__init__.py +8 -4
  174. torch_geometric/nn/pool/cluster_pool.py +3 -4
  175. torch_geometric/nn/pool/connect/base.py +1 -3
  176. torch_geometric/nn/pool/knn.py +13 -10
  177. torch_geometric/nn/pool/select/base.py +1 -4
  178. torch_geometric/nn/to_hetero_module.py +4 -3
  179. torch_geometric/nn/to_hetero_transformer.py +3 -3
  180. torch_geometric/nn/to_hetero_with_bases_transformer.py +4 -4
  181. torch_geometric/profile/__init__.py +2 -0
  182. torch_geometric/profile/nvtx.py +66 -0
  183. torch_geometric/profile/utils.py +20 -5
  184. torch_geometric/sampler/__init__.py +2 -1
  185. torch_geometric/sampler/base.py +336 -7
  186. torch_geometric/sampler/hgt_sampler.py +11 -1
  187. torch_geometric/sampler/neighbor_sampler.py +296 -23
  188. torch_geometric/sampler/utils.py +93 -5
  189. torch_geometric/testing/__init__.py +4 -0
  190. torch_geometric/testing/decorators.py +35 -5
  191. torch_geometric/testing/distributed.py +1 -1
  192. torch_geometric/transforms/__init__.py +2 -0
  193. torch_geometric/transforms/add_gpse.py +49 -0
  194. torch_geometric/transforms/add_metapaths.py +8 -6
  195. torch_geometric/transforms/add_positional_encoding.py +2 -2
  196. torch_geometric/transforms/base_transform.py +2 -1
  197. torch_geometric/transforms/delaunay.py +65 -15
  198. torch_geometric/transforms/face_to_edge.py +32 -3
  199. torch_geometric/transforms/gdc.py +7 -8
  200. torch_geometric/transforms/largest_connected_components.py +1 -1
  201. torch_geometric/transforms/mask.py +5 -1
  202. torch_geometric/transforms/normalize_features.py +3 -3
  203. torch_geometric/transforms/random_link_split.py +1 -1
  204. torch_geometric/transforms/remove_duplicated_edges.py +4 -2
  205. torch_geometric/transforms/rooted_subgraph.py +1 -1
  206. torch_geometric/typing.py +70 -17
  207. torch_geometric/utils/__init__.py +4 -1
  208. torch_geometric/utils/_lexsort.py +0 -9
  209. torch_geometric/utils/_negative_sampling.py +27 -12
  210. torch_geometric/utils/_scatter.py +132 -195
  211. torch_geometric/utils/_sort_edge_index.py +0 -2
  212. torch_geometric/utils/_spmm.py +16 -14
  213. torch_geometric/utils/_subgraph.py +4 -0
  214. torch_geometric/utils/_trim_to_layer.py +2 -2
  215. torch_geometric/utils/convert.py +17 -10
  216. torch_geometric/utils/cross_entropy.py +34 -13
  217. torch_geometric/utils/embedding.py +91 -2
  218. torch_geometric/utils/geodesic.py +4 -3
  219. torch_geometric/utils/influence.py +279 -0
  220. torch_geometric/utils/map.py +13 -9
  221. torch_geometric/utils/nested.py +1 -1
  222. torch_geometric/utils/smiles.py +3 -3
  223. torch_geometric/utils/sparse.py +7 -14
  224. torch_geometric/visualization/__init__.py +2 -1
  225. torch_geometric/visualization/graph.py +250 -5
  226. torch_geometric/warnings.py +11 -2
  227. torch_geometric/nn/nlp/__init__.py +0 -7
  228. torch_geometric/nn/nlp/sentence_transformer.py +0 -101
@@ -0,0 +1,492 @@
1
+ import gzip
2
+ import json
3
+ import multiprocessing
4
+ import os
5
+ import sys
6
+ from collections import defaultdict
7
+ from multiprocessing import Pool
8
+ from typing import Callable, List, Optional, Tuple
9
+
10
+ import numpy as np
11
+ import requests
12
+ import torch
13
+ from tqdm import tqdm
14
+
15
+ from torch_geometric.data import Data, InMemoryDataset, download_url
16
+ from torch_geometric.io import fs
17
+ from torch_geometric.llm.models import LLM
18
+ from torch_geometric.utils import one_hot
19
+
20
+
21
+ def clean_up_description(description: str) -> str:
22
+ description = description + " "
23
+
24
+ # extra adj Pure
25
+ if description.startswith("Pure "):
26
+ description = description.replace("Pure ", "")
27
+ # fix typo
28
+ if description.startswith("Mercurycombines"):
29
+ description = description.replace("Mercurycombines",
30
+ "Mercury combines")
31
+
32
+ # a special case
33
+ description = description.replace(
34
+ "17-Hydroxy-6-methylpregna-3,6-diene-3,20-dione. ",
35
+ "17-Hydroxy-6-methylpregna-3,6-diene-3,20-dione is ")
36
+
37
+ # a special case
38
+ description = description.replace("5-Thymidylic acid. ",
39
+ "5-Thymidylic acid. is ")
40
+
41
+ # a special case
42
+ description = description.replace(
43
+ "5'-S-(3-Amino-3-carboxypropyl)-5'-thioadenosine. ",
44
+ "5'-S-(3-Amino-3-carboxypropyl)-5'-thioadenosine. is ")
45
+
46
+ # a special case
47
+ description = description.replace(
48
+ ("Guanosine 5'-(trihydrogen diphosphate), monoanhydride"
49
+ " with phosphorothioic acid. "),
50
+ ("Guanosine 5'-(trihydrogen diphosphate), monoanhydride"
51
+ " with phosphorothioic acid is "))
52
+
53
+ # a special case
54
+ description = description.replace("5'-Uridylic acid. ",
55
+ "5'-Uridylic acid is ")
56
+
57
+ # a special case
58
+ description = description.replace("5'-Adenylic acid, ",
59
+ "5'-Adenylic acid is ")
60
+
61
+ # a special case
62
+ description = description.replace(
63
+ "Uridine 5'-(tetrahydrogen triphosphate). ",
64
+ "Uridine 5'-(tetrahydrogen triphosphate). is ")
65
+
66
+ # a special case
67
+ description = description.replace("Inosine 5'-Monophosphate. ",
68
+ "Inosine 5'-Monophosphate. is ")
69
+
70
+ # a special case
71
+ description = description.replace("Pivaloyloxymethyl butyrate (AN-9), ",
72
+ "Pivaloyloxymethyl butyrate (AN-9) is ")
73
+
74
+ # a special case
75
+ description = description.replace(
76
+ "4-Amino-5-cyano-7-(D-ribofuranosyl)-7H- pyrrolo(2,3-d)pyrimidine. ",
77
+ "4-Amino-5-cyano-7-(D-ribofuranosyl)-7H- pyrrolo(2,3-d)pyrimidine is ")
78
+
79
+ # a special case
80
+ description = description.replace(
81
+ "Cardamonin (also known as Dihydroxymethoxychalcone), ",
82
+ "Cardamonin (also known as Dihydroxymethoxychalcone) is ")
83
+
84
+ # a special case
85
+ description = description.replace("Lithium has been used to treat ",
86
+ "Lithium is ")
87
+
88
+ # a special case
89
+ description = description.replace("4,4'-Methylenebis ",
90
+ "4,4'-Methylenebis is ")
91
+
92
+ # a special case
93
+ description = description.replace(
94
+ "2,3,7,8-Tetrachlorodibenzo-p-dioxin",
95
+ "2,3,7,8-Tetrachlorodibenzo-p-dioxin is ")
96
+
97
+ # a special case
98
+ description = description.replace("Exposure to 2,4,5-trichlorophenol ",
99
+ "2,4,5-Trichlorophenol exposure ")
100
+
101
+ index = 0
102
+ L = len(description)
103
+ if description.startswith('C.I. '):
104
+ start_index = len('C.I. ')
105
+ elif description.startswith('Nectriapyrone. D '):
106
+ start_index = len('Nectriapyrone. D ')
107
+ elif description.startswith(
108
+ 'Salmonella enterica sv. Minnesota LPS core oligosaccharide'):
109
+ start_index = len(
110
+ 'Salmonella enterica sv. Minnesota LPS core oligosaccharide')
111
+ else:
112
+ start_index = 0
113
+ for index in range(start_index, L - 1):
114
+ if index < L - 2:
115
+ if description[index] == '.' and description[
116
+ index + 1] == ' ' and 'A' <= description[index + 2] <= 'Z':
117
+ break
118
+ elif index == L - 2:
119
+ break
120
+
121
+ first_sentence = description[:index + 1]
122
+ return first_sentence
123
+
124
+
125
+ def extract_name(
126
+ name_raw: str,
127
+ description: str,
128
+ ) -> Tuple[Optional[str], str, str]:
129
+ first_sentence = clean_up_description(description)
130
+
131
+ splitter = ' -- -- '
132
+ if ' are ' in first_sentence or ' were ' in first_sentence:
133
+ replaced_words = 'These molecules'
134
+ else:
135
+ replaced_words = 'This molecule'
136
+
137
+ first_sentence = first_sentence.replace(' is ', splitter)
138
+ first_sentence = first_sentence.replace(' are ', splitter)
139
+ first_sentence = first_sentence.replace(' was ', splitter)
140
+ first_sentence = first_sentence.replace(' were ', splitter)
141
+ first_sentence = first_sentence.replace(' appears ', splitter)
142
+ first_sentence = first_sentence.replace(' occurs ', splitter)
143
+ first_sentence = first_sentence.replace(' stands for ', splitter)
144
+ first_sentence = first_sentence.replace(' belongs to ', splitter)
145
+ first_sentence = first_sentence.replace(' exists ',
146
+ splitter) # only for CID=11443
147
+ first_sentence = first_sentence.replace(' has been used in trials ',
148
+ splitter)
149
+ first_sentence = first_sentence.replace(' has been investigated ',
150
+ splitter)
151
+ first_sentence = first_sentence.replace(' has many uses ', splitter)
152
+
153
+ if splitter in first_sentence:
154
+ extracted_name = first_sentence.split(splitter, 1)[0]
155
+ elif first_sentence.startswith(name_raw):
156
+ extracted_name = name_raw
157
+ elif name_raw in first_sentence:
158
+ extracted_name = name_raw
159
+ extracted_name = None
160
+ print("=====", name_raw)
161
+ print("first sentence: ", first_sentence)
162
+ else:
163
+ extracted_name = None
164
+
165
+ if extracted_name is not None:
166
+ extracted_description = description.replace(extracted_name,
167
+ replaced_words)
168
+ else:
169
+ extracted_description = description
170
+
171
+ return extracted_name, extracted_description, first_sentence
172
+
173
+
174
+ class MoleculeGPTDataset(InMemoryDataset):
175
+ r"""The dataset from the `"MoleculeGPT: Instruction Following Large
176
+ Language Models for Molecular Property Prediction"
177
+ <https://ai4d3.github.io/2023/papers/34.pdf>`_ paper.
178
+
179
+ Args:
180
+ root (str): Root directory where the dataset should be saved.
181
+ transform (callable, optional): A function/transform that takes in an
182
+ :obj:`torch_geometric.data.Data` object and returns a transformed
183
+ version. The data object will be transformed before every access.
184
+ (default: :obj:`None`)
185
+ pre_transform (callable, optional): A function/transform that takes in
186
+ an :obj:`torch_geometric.data.Data` object and returns a
187
+ transformed version. The data object will be transformed before
188
+ being saved to disk. (default: :obj:`None`)
189
+ pre_filter (callable, optional): A function that takes in an
190
+ :obj:`torch_geometric.data.Data` object and returns a boolean
191
+ value, indicating whether the data object should be included in the
192
+ final dataset. (default: :obj:`None`)
193
+ force_reload (bool, optional): Whether to re-process the dataset.
194
+ (default: :obj:`False`)
195
+ total_page_num (int, optional): The number of pages from PubChem.
196
+ (default: :obj:`10`)
197
+ total_block_num (int, optional): The blocks of SDF files from PubChem.
198
+ (default: :obj:`1`)
199
+ num_units (int, optional): Number of units of the sample.
200
+ (default: :obj:`-1`, which means all units will be used)
201
+ """
202
+ description_url = (
203
+ 'https://pubchem.ncbi.nlm.nih.gov/rest/pug_view/annotations/'
204
+ 'heading/json?heading_type=Compound&heading=Record+Description&page={}'
205
+ )
206
+ compound_url = ('https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/'
207
+ 'CURRENT-Full/SDF')
208
+
209
+ def __init__(
210
+ self,
211
+ root: str,
212
+ transform: Optional[Callable] = None,
213
+ pre_transform: Optional[Callable] = None,
214
+ pre_filter: Optional[Callable] = None,
215
+ force_reload: bool = False,
216
+ total_page_num: int = 10,
217
+ total_block_num: int = 1,
218
+ num_units: int = -1,
219
+ ):
220
+ self.total_page_num = total_page_num
221
+ self.total_block_num = total_block_num
222
+ self.num_units = num_units
223
+
224
+ super().__init__(root, transform, pre_transform, pre_filter,
225
+ force_reload=force_reload)
226
+ self.load(self.processed_paths[0])
227
+
228
+ @property
229
+ def raw_file_names(self) -> List[str]:
230
+ return ['pubchem.csv']
231
+
232
+ @property
233
+ def processed_file_names(self) -> List[str]:
234
+ return ['data.pt']
235
+
236
+ def download(self) -> None:
237
+ # Step 01. Extract description
238
+ step1_folder = f"{self.raw_dir}/step_01_PubChemSTM_description"
239
+ if not os.path.exists(step1_folder):
240
+ os.makedirs(step1_folder)
241
+ valid_CID_set = set()
242
+ CID2name_raw, CID2name_extracted = defaultdict(list), defaultdict(
243
+ list)
244
+ CID2text_raw, CID2text_extracted = defaultdict(list), defaultdict(
245
+ list)
246
+
247
+ for page_index in tqdm(range(self.total_page_num)):
248
+ page_num = page_index + 1
249
+ f_out = open(
250
+ f"{step1_folder}/Compound_description_{page_num}.txt", "w")
251
+
252
+ description_data = requests.get(
253
+ self.description_url.format(page_num)).json()
254
+
255
+ description_data = description_data["Annotations"]
256
+ assert description_data["Page"] == page_num
257
+
258
+ record_list = description_data["Annotation"]
259
+
260
+ for record in record_list:
261
+ try:
262
+ CID = record["LinkedRecords"]["CID"][0]
263
+ if "Name" in record:
264
+ name_raw = record["Name"]
265
+ CID2name_raw[CID].append(name_raw)
266
+ else:
267
+ name_raw = None
268
+
269
+ data_list = record["Data"]
270
+ for data in data_list:
271
+ description = data["Value"]["StringWithMarkup"][0][
272
+ "String"].strip()
273
+
274
+ extracted_name, extracted_description, _ = extract_name( # noqa: E501
275
+ name_raw, description)
276
+ if extracted_name is not None:
277
+ CID2name_extracted[CID].append(extracted_name)
278
+
279
+ CID2text_raw[CID].append(description)
280
+ CID2text_extracted[CID].append(
281
+ extracted_description)
282
+
283
+ valid_CID_set.add(CID)
284
+ f_out.write(f"{CID}\n")
285
+ f_out.write(f"{extracted_description}\n\n")
286
+ except Exception:
287
+ continue
288
+
289
+ valid_CID_list = sorted(list(valid_CID_set))
290
+ print(f"Total CID (with raw name) {len(CID2name_raw)}")
291
+ print(f"Total CID (with extracted name) {len(CID2name_extracted)}")
292
+ print(f"Total CID {len(valid_CID_list)}")
293
+
294
+ with open(f"{self.raw_dir}/CID2name_raw.json", "w") as f:
295
+ json.dump(CID2name_raw, f)
296
+
297
+ with open(f"{self.raw_dir}/CID2name.json", "w") as f:
298
+ json.dump(CID2name_extracted, f)
299
+
300
+ with open(f"{self.raw_dir}/CID2text_raw.json", "w") as f:
301
+ json.dump(CID2text_raw, f)
302
+
303
+ with open(f"{self.raw_dir}/CID2text.json", "w") as f:
304
+ json.dump(CID2text_extracted, f)
305
+
306
+ # Step 02. Download SDF Files
307
+ step2_folder = f"{self.raw_dir}/step_02_PubChemSTM_SDF"
308
+ if not os.path.exists(step2_folder):
309
+ for block_id in tqdm(range(self.total_block_num)):
310
+ block_size = 500000
311
+ l_id = block_id * block_size + 1
312
+ r_id = (block_id + 1) * block_size
313
+
314
+ compound_file_name = f"Compound_{l_id:09d}_{r_id:09d}.sdf.gz"
315
+ download_url(f"{self.compound_url}/{compound_file_name}",
316
+ step2_folder)
317
+
318
+ def process(self, use_mp: bool = False) -> None:
319
+ try:
320
+ from rdkit import Chem
321
+ from rdkit.Chem.rdchem import BondType as BT
322
+ WITH_RDKIT = True
323
+
324
+ except ImportError:
325
+ WITH_RDKIT = False
326
+
327
+ if not WITH_RDKIT:
328
+ print(("Using a pre-processed version of the dataset. Please "
329
+ "install 'rdkit' to alternatively process the raw data."),
330
+ file=sys.stderr)
331
+
332
+ data_list = fs.torch_load(self.raw_paths[0])
333
+ data_list = [Data(**data_dict) for data_dict in data_list]
334
+
335
+ if self.pre_filter is not None:
336
+ data_list = [d for d in data_list if self.pre_filter(d)]
337
+
338
+ if self.pre_transform is not None:
339
+ data_list = [self.pre_transform(d) for d in data_list]
340
+
341
+ self.save(data_list, self.processed_paths[0])
342
+ return
343
+
344
+ # Step 03. Filter out SDF
345
+ step2_folder = f"{self.raw_dir}/step_02_PubChemSTM_SDF"
346
+ step3_folder = f"{self.raw_dir}/step_03_PubChemSTM_filtered"
347
+ if not os.path.exists(step3_folder):
348
+ os.makedirs(step3_folder)
349
+ with open(f"{self.raw_dir}/CID2text.json") as f:
350
+ CID2text = json.load(f)
351
+ target_CID_list = set(CID2text.keys())
352
+
353
+ block_size = 500000
354
+
355
+ def extract_one_SDF_file(block_id: int) -> None:
356
+ valid_mol_count = 0
357
+
358
+ writer = Chem.SDWriter(
359
+ f'{step3_folder}/filtered_{block_id}.sdf')
360
+ l_id = block_id * block_size + 1
361
+ r_id = (block_id + 1) * block_size
362
+
363
+ compound_file_name = f"Compound_{l_id:09d}_{r_id:09d}.sdf.gz"
364
+ gzip_loader = gzip.open(f"{step2_folder}/{compound_file_name}")
365
+ suppl = Chem.ForwardSDMolSupplier(gzip_loader)
366
+
367
+ for mol in tqdm(suppl):
368
+ if mol is None:
369
+ continue
370
+ cid = mol.GetProp("PUBCHEM_COMPOUND_CID")
371
+
372
+ if cid not in target_CID_list:
373
+ continue
374
+
375
+ writer.write(mol)
376
+ valid_mol_count += 1
377
+
378
+ writer.close()
379
+ print(f"block id: {block_id}\nfound {valid_mol_count}\n\n")
380
+ sys.stdout.flush()
381
+ return
382
+
383
+ if use_mp:
384
+ num_process = multiprocessing.cpu_count()
385
+ print(f"{num_process} CPUs")
386
+ num_process = 8
387
+ p = Pool(num_process)
388
+
389
+ block_id_list = np.arange(self.total_block_num)
390
+ with p:
391
+ p.map(extract_one_SDF_file, block_id_list)
392
+ else:
393
+ for block_id in range(self.total_block_num):
394
+ extract_one_SDF_file(block_id)
395
+
396
+ # Step 04. Merge SDF
397
+ with open(f"{self.raw_dir}/CID2text.json") as f:
398
+ CID2text = json.load(f)
399
+ target_CID_list = set(CID2text.keys())
400
+ print(f'The length of target_CID_list: {len(target_CID_list)}')
401
+
402
+ writer = Chem.SDWriter(f'{self.raw_dir}/molecules.sdf')
403
+
404
+ found_CID_set = set()
405
+ for block_id in range(self.total_block_num + 1):
406
+ compound_file_path = f"{step3_folder}/filtered_{block_id}.sdf"
407
+ try:
408
+ suppl = Chem.SDMolSupplier(compound_file_path)
409
+
410
+ for mol in tqdm(suppl):
411
+ writer.write(mol)
412
+ cid = mol.GetProp("PUBCHEM_COMPOUND_CID")
413
+ found_CID_set.add(cid)
414
+ except Exception:
415
+ print(f"block id: {block_id} with 0 valid SDF file")
416
+ continue
417
+
418
+ writer.close()
419
+ print(f"In total: {len(found_CID_set)} molecules")
420
+
421
+ # Step 05. Convert to PyG data format
422
+ types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'F': 4, 'Unknow': 5}
423
+ bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
424
+
425
+ data_list = []
426
+ # Real data
427
+ CID2text_file = f'{self.raw_dir}/CID2text.json'
428
+
429
+ with open(CID2text_file) as f:
430
+ CID2text_data = json.load(f)
431
+
432
+ suppl = Chem.SDMolSupplier(f'{self.raw_dir}/molecules.sdf')
433
+
434
+ llm = LLM(
435
+ # model_name='lmsys/vicuna-7b-v1.5',
436
+ model_name='TinyLlama/TinyLlama-1.1B-Chat-v0.1',
437
+ num_params=1,
438
+ dtype=torch.bfloat16,
439
+ )
440
+ prompt = ("Propose a question regarding the molecule '∼' "
441
+ "whose answer is: {}:")
442
+ for mol in tqdm(suppl):
443
+ if mol.HasProp('PUBCHEM_COMPOUND_CID'):
444
+ CID = mol.GetProp("PUBCHEM_COMPOUND_CID")
445
+ CAN_SMILES = mol.GetProp("PUBCHEM_SMILES")
446
+
447
+ m: Chem.Mol = Chem.MolFromSmiles(CAN_SMILES)
448
+ if m is None:
449
+ continue
450
+ RDKit_CAN_SMILES = Chem.MolToSmiles(m)
451
+
452
+ ground_truth = CID2text_data[CID][0]
453
+
454
+ instruction = llm.inference([prompt.format(ground_truth)])[0]
455
+
456
+ x: torch.Tensor = torch.tensor([
457
+ types[atom.GetSymbol()] if atom.GetSymbol() in types else 5
458
+ for atom in m.GetAtoms()
459
+ ])
460
+ x = one_hot(x, num_classes=len(types), dtype=torch.float)
461
+
462
+ rows, cols, edge_types = [], [], []
463
+ for bond in m.GetBonds():
464
+ i, j = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
465
+ edge_types += [bonds[bond.GetBondType()]] * 2
466
+ rows += [i, j]
467
+ cols += [j, i]
468
+
469
+ edge_index = torch.tensor([rows, cols], dtype=torch.long)
470
+ edge_type = torch.tensor(edge_types, dtype=torch.long)
471
+ edge_attr = one_hot(edge_type, num_classes=len(bonds))
472
+
473
+ data = Data(
474
+ x=x,
475
+ edge_index=edge_index,
476
+ edge_attr=edge_attr,
477
+ smiles=RDKit_CAN_SMILES,
478
+ instruction=instruction,
479
+ y=ground_truth,
480
+ )
481
+
482
+ if self.pre_filter is not None and not self.pre_filter(data):
483
+ continue
484
+ if self.pre_transform is not None:
485
+ data = self.pre_transform(data)
486
+
487
+ data_list.append(data)
488
+
489
+ if self.num_units > 0 and len(data_list) >= self.num_units:
490
+ break
491
+
492
+ self.save(data_list, self.processed_paths[0])
@@ -210,8 +210,9 @@ class MoleculeNet(InMemoryDataset):
210
210
  data.y = y
211
211
 
212
212
  if data.num_nodes == 0:
213
- warnings.warn(f"Skipping molecule '{smiles}' since it "
214
- f"resulted in zero atoms")
213
+ warnings.warn(
214
+ f"Skipping molecule '{smiles}' since it "
215
+ f"resulted in zero atoms", stacklevel=2)
215
216
  continue
216
217
 
217
218
  if self.pre_filter is not None and not self.pre_filter(data):
@@ -107,7 +107,8 @@ class PPI(InMemoryDataset):
107
107
  for s, split in enumerate(['train', 'valid', 'test']):
108
108
  path = osp.join(self.raw_dir, f'{split}_graph.json')
109
109
  with open(path) as f:
110
- G = nx.DiGraph(json_graph.node_link_graph(json.load(f)))
110
+ G = nx.DiGraph(
111
+ json_graph.node_link_graph(json.load(f), edges="links"))
111
112
 
112
113
  x = np.load(osp.join(self.raw_dir, f'{split}_feats.npy'))
113
114
  x = torch.from_numpy(x).to(torch.float)