pyg-nightly 2.7.0.dev20241009__py3-none-any.whl → 2.7.0.dev20241011__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20241009
3
+ Version: 2.7.0.dev20241011
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -251,7 +251,7 @@ These GNN layers can be stacked together to create Graph Neural Network models.
251
251
  - **[EGConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.EGConv.html)** from Tailor *et al.*: [Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions](https://arxiv.org/abs/2104.01481) (GNNSys 2021) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/egc.py)\]
252
252
  - **[GATv2Conv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATv2Conv.html)** from Brody *et al.*: [How Attentive are Graph Attention Networks?](https://arxiv.org/abs/2105.14491) (ICLR 2022)
253
253
  - **[TransformerConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.TransformerConv.html)** from Shi *et al.*: [Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification](https://arxiv.org/abs/2009.03509) (CoRR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/unimp_arxiv.py)\]
254
- - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
254
+ - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
255
255
  - **[GraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html)** from, *e.g.*, Morris *et al.*: [Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks](https://arxiv.org/abs/1810.02244) (AAAI 2019)
256
256
  - **[GatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GatedGraphConv.html)** from Li *et al.*: [Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493) (ICLR 2016)
257
257
  - **[ResGatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.ResGatedGraphConv.html)** from Bresson and Laurent: [Residual Gated Graph ConvNets](https://arxiv.org/abs/1711.07553) (CoRR 2017)
@@ -394,7 +394,7 @@ Such application is challenging since the entire graph, its associated features
394
394
  Many state-of-the-art scalability approaches tackle this challenge by sampling neighborhoods for mini-batch training, graph clustering and partitioning, or by using simplified GNN models.
395
395
  These approaches have been implemented in PyG, and can benefit from the above GNN layers, operators and models.
396
396
 
397
- - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_gat.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
397
+ - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
398
398
  - **[ClusterGCN](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.ClusterLoader)** from Chiang *et al.*: [Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](https://arxiv.org/abs/1905.07953) (KDD 2019) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_ppi.py)\]
399
399
  - **[GraphSAINT](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.GraphSAINTSampler)** from Zeng *et al.*: [GraphSAINT: Graph Sampling Based Inductive Learning Method](https://arxiv.org/abs/1907.04931) (ICLR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_saint.py)\]
400
400
 
@@ -1,5 +1,5 @@
1
- torch_geometric/__init__.py,sha256=0DyVVRCNEucg6wdvmBAmO-c4nNWoNpB_gI8PzqzU4Ts,1904
2
- torch_geometric/_compile.py,sha256=0HAdz6MGmyrgi4g6P-PorTg8dPIKx3Jo4zVJavrlfX0,1139
1
+ torch_geometric/__init__.py,sha256=m27OdfIQv23VBRJsd93Sss7U6lW6QQpl6oizebKWEIM,1904
2
+ torch_geometric/_compile.py,sha256=REjj1_qX8YBrva6iqr3AsNiDueTAy2BhLZkdezKL2MY,1322
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
5
5
  torch_geometric/config_mixin.py,sha256=GxSa_skJpL17H43rriZaeFkhmLzODrQoHHIzD83i-Vk,4244
@@ -54,18 +54,18 @@ torch_geometric/data/view.py,sha256=XjkVSc-UWZFCT4DlXLShZtO8duhFQkS9gq88zZXANsk,
54
54
  torch_geometric/data/lightning/__init__.py,sha256=w3En1tJfy3kSqe1MycpOyZpHFO3fxBCgNCUOznPA3YU,178
55
55
  torch_geometric/data/lightning/datamodule.py,sha256=Bn9iaIfE4NWDDWWMqCvBeZ4bIW1Silx_Ol5CPJCliaQ,29242
56
56
  torch_geometric/datasets/__init__.py,sha256=fey-955PyCQXGBeUTNPWwU5uK3PJOEvaY1_fDt1SxXc,5880
57
- torch_geometric/datasets/actor.py,sha256=H8srMdo5qo8eg4LDxEdYcxZi49I_HVDcr8R_pb2W99Q,4461
58
- torch_geometric/datasets/airfrans.py,sha256=7Yt0Xs7jx2NotPT4_9GbpLRWRXYSS5g_4zSENoB_9hs,5684
59
- torch_geometric/datasets/airports.py,sha256=HSZdi6KM_yavppaUl0uWyZ93BEsrtDf9InjPPu9zaUE,3903
60
- torch_geometric/datasets/amazon.py,sha256=aXaLFU67CJ_96wGAE8lW9KEhqt26GWFSDT9PoKO9iLM,3179
61
- torch_geometric/datasets/amazon_book.py,sha256=-r4pYLMoncw3qjNtbtPjs6B3ijTsWo0E14SG5reo6iI,3357
62
- torch_geometric/datasets/amazon_products.py,sha256=RJtmeiRANtCQGNOgUdyo9egbT29ZXWcei2dMK7z6FHQ,3973
63
- torch_geometric/datasets/aminer.py,sha256=9RnS0NvqntHf7bbU84H3Lsvw5vN0WmXS6TfC70DQBrE,5178
64
- torch_geometric/datasets/aqsol.py,sha256=Hi1r44NV44MoRq7hFCiGb93wdwcAwZQfhNW13w4zMdc,5455
65
- torch_geometric/datasets/attributed_graph_dataset.py,sha256=PfmU9FJhqnNRrcGY1pDbqiZzFL1x0K9vHNsB8Tu7GkA,5978
57
+ torch_geometric/datasets/actor.py,sha256=oUxgJIX8bi5hJr1etWNYIFyVQNDDXi1nyVpHGGMEAGQ,4304
58
+ torch_geometric/datasets/airfrans.py,sha256=212gYsk7PvF-qcmvM2YXaOBhFrS79evAGg_sPHXih4w,5439
59
+ torch_geometric/datasets/airports.py,sha256=b3gkv3gY2JkUpmGiz36Z-g7EcnSfU8lBG1YsCOWdJ6k,3758
60
+ torch_geometric/datasets/amazon.py,sha256=zLiAgrd_44LAFb8drsrIphRJNyuWa6TMjZgmoWdf97Y,3005
61
+ torch_geometric/datasets/amazon_book.py,sha256=I-8kRsKgk9M60D4icYDELajlsRwksMLDaHMyn6sBC1Y,3214
62
+ torch_geometric/datasets/amazon_products.py,sha256=-BU4RqIga8LuyCYbKATRsQ4pyDItW4Cb5WEFXqlyqaA,3817
63
+ torch_geometric/datasets/aminer.py,sha256=wVHdKZxp2r56N_NxtvRK6g4gX7HULARtf8EAD0XcBI4,5033
64
+ torch_geometric/datasets/aqsol.py,sha256=4e8hZfpv0ymKj0A7QBJhFtY3oIUCkbMVSorKRgxfhJQ,5223
65
+ torch_geometric/datasets/attributed_graph_dataset.py,sha256=fxg3ISA7JmBJPKo-bYT3K0JMtM-_z6TV9epKMTK251A,5816
66
66
  torch_geometric/datasets/ba2motif_dataset.py,sha256=q4SBYiBcvyhAob7RFa-JQA5tqGNykRQgAvBSTfsU6dw,4258
67
- torch_geometric/datasets/ba_multi_shapes.py,sha256=4cy7WIfuppBJ24QUGovLRah7BkL_qhR3kj4RYeyIJvQ,3700
68
- torch_geometric/datasets/ba_shapes.py,sha256=biuz0NCMNwZUYyQ6f6rwQexHIsTZJeVv7DGj8tl_IO0,3904
67
+ torch_geometric/datasets/ba_multi_shapes.py,sha256=YI8O-fmIzgeUPV4d0HVBRVxTHXr_3ZzUSM4qefLLShI,3500
68
+ torch_geometric/datasets/ba_shapes.py,sha256=sJEQiK3CGlYTdbQBgKeLhO6mY-HRv3nS9Ya_ww4XcXk,3806
69
69
  torch_geometric/datasets/bitcoin_otc.py,sha256=olrsq_Z306-oo17iEQoVif3-CgVIOyVc8twgIMXE0iI,4399
70
70
  torch_geometric/datasets/brca_tgca.py,sha256=2lX9oY6T7aPut8NbXFMWS1c2-_FHqCB4hqUzP4_zFsk,3962
71
71
  torch_geometric/datasets/citation_full.py,sha256=5WT6_iZ1GWuShuYZJErQ3bWNV4bHwZsYYBYztoTxMzs,4458
@@ -274,7 +274,7 @@ torch_geometric/loader/link_loader.py,sha256=xX9C6c3K5oWAcjMygeDOdxv1mzkP8ePidee
274
274
  torch_geometric/loader/link_neighbor_loader.py,sha256=CWv1lO_1Anml8kB60-WG4m_AK1rvqP1jwROV6tHWivo,14383
275
275
  torch_geometric/loader/mixin.py,sha256=R4pWv18hDADa-v1u9xGD8U4DzW_B1i9Fu4LywZLK16Y,10922
276
276
  torch_geometric/loader/neighbor_loader.py,sha256=q5i7AUzBtMgbRz2oHyNH_3u_KvjBzDP8VzHrXamtbds,12452
277
- torch_geometric/loader/neighbor_sampler.py,sha256=FvG4SSxUHPVRDU5fjTMOmQ1cpECLCQxo8HOt79hurWI,8513
277
+ torch_geometric/loader/neighbor_sampler.py,sha256=mraVFXIIGctYot4Xr2VOAhCKAOQyW2gP9KROf7g6tcc,8497
278
278
  torch_geometric/loader/node_loader.py,sha256=g_kV5N0tO6eMSFPc5fdbzfHr4COAeKVJi7FEq52f4zc,11848
279
279
  torch_geometric/loader/prefetch.py,sha256=p1mr54TL4nx3Ea0fBy0JulGYJ8Hq4_9rsiNioZsIW-4,3211
280
280
  torch_geometric/loader/random_node_loader.py,sha256=rCmRXYv70SPxBo-Oh049eFEWEZDV7FmlRPzmjcoirXQ,2196
@@ -618,6 +618,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
618
618
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
619
619
  torch_geometric/visualization/graph.py,sha256=SvbdVx5Zmuy_WSSA4-WWCkqAcCSHVe84mjMfsEWbZCs,4813
620
620
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
621
- pyg_nightly-2.7.0.dev20241009.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
- pyg_nightly-2.7.0.dev20241009.dist-info/METADATA,sha256=-SgyTdGGabVIQ9ww7-bO-zYtgg8X3zXbEfuyIxXfERg,63018
623
- pyg_nightly-2.7.0.dev20241009.dist-info/RECORD,,
621
+ pyg_nightly-2.7.0.dev20241011.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
+ pyg_nightly-2.7.0.dev20241011.dist-info/METADATA,sha256=LcrsQA5scLsnauFJE3OUl1zIT3j1rSizzr9A6torNmc,62897
623
+ pyg_nightly-2.7.0.dev20241011.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20241009'
33
+ __version__ = '2.7.0.dev20241011'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -27,6 +27,11 @@ def compile(
27
27
  This function has the same signature as :meth:`torch.compile` (see
28
28
  `here <https://pytorch.org/docs/stable/generated/torch.compile.html>`__).
29
29
 
30
+ Args:
31
+ model: The model to compile.
32
+ *args: Additional arguments of :meth:`torch.compile`.
33
+ **kwargs: Additional keyword arguments of :meth:`torch.compile`.
34
+
30
35
  .. note::
31
36
  :meth:`torch_geometric.compile` is deprecated in favor of
32
37
  :meth:`torch.compile`.
@@ -19,17 +19,15 @@ class Actor(InMemoryDataset):
19
19
  actor's Wikipedia.
20
20
 
21
21
  Args:
22
- root (str): Root directory where the dataset should be saved.
23
- transform (callable, optional): A function/transform that takes in an
22
+ root: Root directory where the dataset should be saved.
23
+ transform: A function/transform that takes in an
24
24
  :obj:`torch_geometric.data.Data` object and returns a transformed
25
25
  version. The data object will be transformed before every access.
26
- (default: :obj:`None`)
27
- pre_transform (callable, optional): A function/transform that takes in
28
- an :obj:`torch_geometric.data.Data` object and returns a
29
- transformed version. The data object will be transformed before
30
- being saved to disk. (default: :obj:`None`)
31
- force_reload (bool, optional): Whether to re-process the dataset.
32
- (default: :obj:`False`)
26
+ pre_transform: A function/transform that takes in an
27
+ :class:`torch_geometric.data.Data` object and returns a transformed
28
+ version. The data object will be transformed before being saved to
29
+ disk.
30
+ force_reload: Whether to re-process the dataset.
33
31
 
34
32
  **STATS:**
35
33
 
@@ -46,26 +46,24 @@ class AirfRANS(InMemoryDataset):
46
46
  :obj:`torch_geometric.transforms.RadiusGraph` transform.
47
47
 
48
48
  Args:
49
- root (str): Root directory where the dataset should be saved.
50
- task (str): The task to study (:obj:`"full"`, :obj:`"scarce"`,
49
+ root: Root directory where the dataset should be saved.
50
+ task: The task to study (:obj:`"full"`, :obj:`"scarce"`,
51
51
  :obj:`"reynolds"`, :obj:`"aoa"`) that defines the utilized training
52
52
  and test splits.
53
- train (bool, optional): If :obj:`True`, loads the training dataset,
54
- otherwise the test dataset. (default: :obj:`True`)
55
- transform (callable, optional): A function/transform that takes in an
56
- :obj:`torch_geometric.data.Data` object and returns a transformed
53
+ train: If :obj:`True`, loads the training dataset, otherwise the test
54
+ dataset.
55
+ transform: A function/transform that takes in an
56
+ :class:`torch_geometric.data.Data` object and returns a transformed
57
57
  version. The data object will be transformed before every access.
58
- (default: :obj:`None`)
59
- pre_transform (callable, optional): A function/transform that takes in
60
- an :obj:`torch_geometric.data.Data` object and returns a
58
+ pre_transform: A function/transform that takes in an
59
+ :class:`torch_geometric.data.Data` object and returns a
61
60
  transformed version. The data object will be transformed before
62
- being saved to disk. (default: :obj:`None`)
63
- pre_filter (callable, optional): A function that takes in an
61
+ being saved to disk.
62
+ pre_filter: A function that takes in an
64
63
  :obj:`torch_geometric.data.Data` object and returns a boolean
65
64
  value, indicating whether the data object should be included in the
66
- final dataset. (default: :obj:`None`)
67
- force_reload (bool, optional): Whether to re-process the dataset.
68
- (default: :obj:`False`)
65
+ final dataset.
66
+ force_reload: Whether to re-process the dataset.
69
67
 
70
68
  **STATS:**
71
69
 
@@ -14,22 +14,20 @@ class Airports(InMemoryDataset):
14
14
  and labels correspond to activity levels.
15
15
  Features are given by one-hot encoded node identifiers, as described in the
16
16
  `"GraLSP: Graph Neural Networks with Local Structural Patterns"
17
- ` <https://arxiv.org/abs/1911.07675>`_ paper.
17
+ <https://arxiv.org/abs/1911.07675>`_ paper.
18
18
 
19
19
  Args:
20
- root (str): Root directory where the dataset should be saved.
21
- name (str): The name of the dataset (:obj:`"USA"`, :obj:`"Brazil"`,
20
+ root: Root directory where the dataset should be saved.
21
+ name: The name of the dataset (:obj:`"USA"`, :obj:`"Brazil"`,
22
22
  :obj:`"Europe"`).
23
- transform (callable, optional): A function/transform that takes in an
24
- :obj:`torch_geometric.data.Data` object and returns a transformed
23
+ transform: A function/transform that takes in an
24
+ :class:`torch_geometric.data.Data` object and returns a transformed
25
25
  version. The data object will be transformed before every access.
26
- (default: :obj:`None`)
27
26
  pre_transform (callable, optional): A function/transform that takes in
28
- an :obj:`torch_geometric.data.Data` object and returns a
27
+ :class:`torch_geometric.data.Data` object and returns a
29
28
  transformed version. The data object will be transformed before
30
- being saved to disk. (default: :obj:`None`)
31
- force_reload (bool, optional): Whether to re-process the dataset.
32
- (default: :obj:`False`)
29
+ being saved to disk.
30
+ force_reload: Whether to re-process the dataset.
33
31
  """
34
32
  edge_url = ('https://github.com/leoribeiro/struc2vec/'
35
33
  'raw/master/graph/{}-airports.edgelist')
@@ -15,19 +15,16 @@ class Amazon(InMemoryDataset):
15
15
  map goods to their respective product category.
16
16
 
17
17
  Args:
18
- root (str): Root directory where the dataset should be saved.
19
- name (str): The name of the dataset (:obj:`"Computers"`,
20
- :obj:`"Photo"`).
21
- transform (callable, optional): A function/transform that takes in an
22
- :obj:`torch_geometric.data.Data` object and returns a transformed
18
+ root: Root directory where the dataset should be saved.
19
+ name: The name of the dataset (:obj:`"Computers"`, :obj:`"Photo"`).
20
+ transform: A function/transform that takes in a
21
+ :class:`torch_geometric.data.Data` object and returns a transformed
23
22
  version. The data object will be transformed before every access.
24
- (default: :obj:`None`)
25
- pre_transform (callable, optional): A function/transform that takes in
26
- an :obj:`torch_geometric.data.Data` object and returns a
23
+ pre_transform: A function/transform that takes in an
24
+ :class:`torch_geometric.data.Data` object and returns a
27
25
  transformed version. The data object will be transformed before
28
- being saved to disk. (default: :obj:`None`)
29
- force_reload (bool, optional): Whether to re-process the dataset.
30
- (default: :obj:`False`)
26
+ being saved to disk.
27
+ force_reload: Whether to re-process the dataset.
31
28
 
32
29
  **STATS:**
33
30
 
@@ -14,17 +14,16 @@ class AmazonBook(InMemoryDataset):
14
14
  No labels or features are provided.
15
15
 
16
16
  Args:
17
- root (str): Root directory where the dataset should be saved.
18
- transform (callable, optional): A function/transform that takes in an
19
- :obj:`torch_geometric.data.HeteroData` object and returns a
17
+ root: Root directory where the dataset should be saved.
18
+ transform: A function/transform that takes in an
19
+ :class:`torch_geometric.data.HeteroData` object and returns a
20
20
  transformed version. The data object will be transformed before
21
- every access. (default: :obj:`None`)
22
- pre_transform (callable, optional): A function/transform that takes in
23
- an :obj:`torch_geometric.data.HeteroData` object and returns a
21
+ every access.
22
+ pre_transform: A function/transform that takes in an
23
+ :class:`torch_geometric.data.HeteroData` object and returns a
24
24
  transformed version. The data object will be transformed before
25
- being saved to disk. (default: :obj:`None`)
26
- force_reload (bool, optional): Whether to re-process the dataset.
27
- (default: :obj:`False`)
25
+ being saved to disk.
26
+ force_reload: Whether to re-process the dataset.
28
27
  """
29
28
  url = ('https://raw.githubusercontent.com/gusye1234/LightGCN-PyTorch/'
30
29
  'master/data/amazon-book')
@@ -14,17 +14,15 @@ class AmazonProducts(InMemoryDataset):
14
14
  containing products and its categories.
15
15
 
16
16
  Args:
17
- root (str): Root directory where the dataset should be saved.
18
- transform (callable, optional): A function/transform that takes in an
19
- :obj:`torch_geometric.data.Data` object and returns a transformed
17
+ root: Root directory where the dataset should be saved.
18
+ transform: A function/transform that takes in an
19
+ :class:`torch_geometric.data.Data` object and returns a transformed
20
20
  version. The data object will be transformed before every access.
21
- (default: :obj:`None`)
22
- pre_transform (callable, optional): A function/transform that takes in
23
- an :obj:`torch_geometric.data.Data` object and returns a
21
+ pre_transform: A function/transform that takes in a
22
+ :class:`torch_geometric.data.Data` object and returns a
24
23
  transformed version. The data object will be transformed before
25
- being saved to disk. (default: :obj:`None`)
26
- force_reload (bool, optional): Whether to re-process the dataset.
27
- (default: :obj:`False`)
24
+ being saved to disk.
25
+ force_reload: Whether to re-process the dataset.
28
26
 
29
27
  **STATS:**
30
28
 
@@ -24,17 +24,16 @@ class AMiner(InMemoryDataset):
24
24
  truth labels for a subset of nodes.
25
25
 
26
26
  Args:
27
- root (str): Root directory where the dataset should be saved.
28
- transform (callable, optional): A function/transform that takes in an
29
- :obj:`torch_geometric.data.HeteroData` object and returns a
27
+ root: Root directory where the dataset should be saved.
28
+ transform: A function/transform that takes in a
29
+ :class:`torch_geometric.data.HeteroData` object and returns a
30
30
  transformed version. The data object will be transformed before
31
- every access. (default: :obj:`None`)
32
- pre_transform (callable, optional): A function/transform that takes in
33
- an :obj:`torch_geometric.data.HeteroData` object and returns a
31
+ every access.
32
+ pre_transform: A function/transform that takes in a
33
+ :class:`torch_geometric.data.HeteroData` object and returns a
34
34
  transformed version. The data object will be transformed before
35
- being saved to disk. (default: :obj:`None`)
36
- force_reload (bool, optional): Whether to re-process the dataset.
37
- (default: :obj:`False`)
35
+ being saved to disk.
36
+ force_reload: Whether to re-process the dataset.
38
37
  """
39
38
 
40
39
  url = 'https://www.dropbox.com/s/1bnz8r7mofx0osf/net_aminer.zip?dl=1'
@@ -30,25 +30,22 @@ class AQSOL(InMemoryDataset):
30
30
  the :class:`~torch_geometric.datasets.ZINC` dataset.
31
31
 
32
32
  Args:
33
- root (str): Root directory where the dataset should be saved.
34
- split (str, optional): If :obj:`"train"`, loads the training dataset.
33
+ root: Root directory where the dataset should be saved.
34
+ split: If :obj:`"train"`, loads the training dataset.
35
35
  If :obj:`"val"`, loads the validation dataset.
36
36
  If :obj:`"test"`, loads the test dataset.
37
- (default: :obj:`"train"`)
38
- transform (callable, optional): A function/transform that takes in an
39
- :obj:`torch_geometric.data.Data` object and returns a transformed
37
+ transform: A function/transform that takes in a
38
+ :class:`torch_geometric.data.Data` object and returns a transformed
40
39
  version. The data object will be transformed before every access.
41
- (default: :obj:`None`)
42
- pre_transform (callable, optional): A function/transform that takes in
43
- an :obj:`torch_geometric.data.Data` object and returns a
40
+ pre_transform: A function/transform that takes in a
41
+ :class:`torch_geometric.data.Data` object and returns a
44
42
  transformed version. The data object will be transformed before
45
- being saved to disk. (default: :obj:`None`)
43
+ being saved to disk.
46
44
  pre_filter (callable, optional): A function that takes in an
47
- :obj:`torch_geometric.data.Data` object and returns a boolean
45
+ :class:`torch_geometric.data.Data` object and returns a boolean
48
46
  value, indicating whether the data object should be included in
49
- the final dataset. (default: :obj:`None`)
50
- force_reload (bool, optional): Whether to re-process the dataset.
51
- (default: :obj:`False`)
47
+ the final dataset.
48
+ force_reload: Whether to re-process the dataset.
52
49
 
53
50
  **STATS:**
54
51
 
@@ -19,21 +19,19 @@ class AttributedGraphDataset(InMemoryDataset):
19
19
  <https://arxiv.org/abs/2009.00826>`_ paper.
20
20
 
21
21
  Args:
22
- root (str): Root directory where the dataset should be saved.
23
- name (str): The name of the dataset (:obj:`"Wiki"`, :obj:`"Cora"`
22
+ root: Root directory where the dataset should be saved.
23
+ name: The name of the dataset (:obj:`"Wiki"`, :obj:`"Cora"`,
24
24
  :obj:`"CiteSeer"`, :obj:`"PubMed"`, :obj:`"BlogCatalog"`,
25
25
  :obj:`"PPI"`, :obj:`"Flickr"`, :obj:`"Facebook"`, :obj:`"Twitter"`,
26
26
  :obj:`"TWeibo"`, :obj:`"MAG"`).
27
- transform (callable, optional): A function/transform that takes in an
28
- :obj:`torch_geometric.data.Data` object and returns a transformed
27
+ transform: A function/transform that takes in a
28
+ :class:`torch_geometric.data.Data` object and returns a transformed
29
29
  version. The data object will be transformed before every access.
30
- (default: :obj:`None`)
31
- pre_transform (callable, optional): A function/transform that takes in
32
- an :obj:`torch_geometric.data.Data` object and returns a
30
+ pre_transform: A function/transform that takes in a
31
+ :class:`torch_geometric.data.Data` object and returns a
33
32
  transformed version. The data object will be transformed before
34
- being saved to disk. (default: :obj:`None`)
35
- force_reload (bool, optional): Whether to re-process the dataset.
36
- (default: :obj:`False`)
33
+ being saved to disk.
34
+ force_reload: Whether to re-process the dataset.
37
35
 
38
36
  **STATS:**
39
37
 
@@ -25,21 +25,19 @@ class BAMultiShapesDataset(InMemoryDataset):
25
25
  This dataset is pre-computed from the official implementation.
26
26
 
27
27
  Args:
28
- root (str): Root directory where the dataset should be saved.
29
- transform (callable, optional): A function/transform that takes in an
30
- :obj:`torch_geometric.data.Data` object and returns a transformed
28
+ root: Root directory where the dataset should be saved.
29
+ transform: A function/transform that takes in a
30
+ :class:`torch_geometric.data.Data` object and returns a transformed
31
31
  version. The data object will be transformed before every access.
32
- (default: :obj:`None`)
33
- pre_transform (callable, optional): A function/transform that takes in
34
- an :obj:`torch_geometric.data.Data` object and returns a
32
+ pre_transform: A function/transform that takes in a
33
+ :class:`torch_geometric.data.Data` object and returns a
35
34
  transformed version. The data object will be transformed before
36
- being saved to disk. (default: :obj:`None`)
37
- pre_filter (callable, optional): A function that takes in an
38
- :obj:`torch_geometric.data.Data` object and returns a boolean
35
+ being saved to disk.
36
+ pre_filter: A function that takes in a
37
+ :class:`torch_geometric.data.Data` object and returns a boolean
39
38
  value, indicating whether the data object should be included in the
40
- final dataset. (default: :obj:`None`)
41
- force_reload (bool, optional): Whether to re-process the dataset.
42
- (default: :obj:`False`)
39
+ final dataset.
40
+ force_reload: Whether to re-process the dataset.
43
41
 
44
42
  **STATS:**
45
43
 
@@ -30,15 +30,14 @@ class BAShapes(InMemoryDataset):
30
30
  :class:`torch_geometric.datasets.graph_generator.BAGraph` instead.
31
31
 
32
32
  Args:
33
- connection_distribution (str, optional): Specifies how the houses
34
- and the BA graph get connected. Valid inputs are :obj:`"random"`
33
+ connection_distribution: Specifies how the houses and the BA graph get
34
+ connected. Valid inputs are :obj:`"random"`
35
35
  (random BA graph nodes are selected for connection to the houses),
36
36
  and :obj:`"uniform"` (uniformly distributed BA graph nodes are
37
- selected for connection to the houses). (default: :obj:`"random"`)
38
- transform (callable, optional): A function/transform that takes in an
39
- :obj:`torch_geometric.data.Data` object and returns a transformed
37
+ selected for connection to the houses).
38
+ transform: A function/transform that takes in a
39
+ :class:`torch_geometric.data.Data` object and returns a transformed
40
40
  version. The data object will be transformed before every access.
41
- (default: :obj:`None`)
42
41
  """
43
42
  def __init__(
44
43
  self,
@@ -72,9 +72,9 @@ class NeighborSampler(torch.utils.data.DataLoader):
72
72
  `examples/reddit.py
73
73
  <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
74
74
  reddit.py>`_ or
75
- `examples/ogbn_products_sage.py
75
+ `examples/ogbn_train.py
76
76
  <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
77
- ogbn_products_sage.py>`_.
77
+ ogbn_train.py>`_.
78
78
 
79
79
  Args:
80
80
  edge_index (Tensor or SparseTensor): A :obj:`torch.LongTensor` or a