pyg-nightly 2.7.0.dev20241008__py3-none-any.whl → 2.7.0.dev20241010__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,15 +1,14 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20241008
3
+ Version: 2.7.0.dev20241010
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
7
- Requires-Python: >=3.8
7
+ Requires-Python: >=3.9
8
8
  Description-Content-Type: text/markdown
9
9
  Classifier: Development Status :: 5 - Production/Stable
10
10
  Classifier: License :: OSI Approved :: MIT License
11
11
  Classifier: Programming Language :: Python
12
- Classifier: Programming Language :: Python :: 3.8
13
12
  Classifier: Programming Language :: Python :: 3.9
14
13
  Classifier: Programming Language :: Python :: 3.10
15
14
  Classifier: Programming Language :: Python :: 3.11
@@ -410,7 +409,7 @@ These approaches have been implemented in PyG, and can benefit from the above GN
410
409
 
411
410
  ## Installation
412
411
 
413
- PyG is available for Python 3.8 to Python 3.12.
412
+ PyG is available for Python 3.9 to Python 3.12.
414
413
 
415
414
  ### Anaconda
416
415
 
@@ -1,5 +1,5 @@
1
- torch_geometric/__init__.py,sha256=5IpJtlo1cx9kxrtG-Q40RLFXDiuzxTz3VLXuEqEQYJc,1904
2
- torch_geometric/_compile.py,sha256=0HAdz6MGmyrgi4g6P-PorTg8dPIKx3Jo4zVJavrlfX0,1139
1
+ torch_geometric/__init__.py,sha256=KCUgJSq3OoXQwxcFdh79xopt7g-S82vrOW6ez2L3tLg,1904
2
+ torch_geometric/_compile.py,sha256=REjj1_qX8YBrva6iqr3AsNiDueTAy2BhLZkdezKL2MY,1322
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
5
5
  torch_geometric/config_mixin.py,sha256=GxSa_skJpL17H43rriZaeFkhmLzODrQoHHIzD83i-Vk,4244
@@ -54,18 +54,18 @@ torch_geometric/data/view.py,sha256=XjkVSc-UWZFCT4DlXLShZtO8duhFQkS9gq88zZXANsk,
54
54
  torch_geometric/data/lightning/__init__.py,sha256=w3En1tJfy3kSqe1MycpOyZpHFO3fxBCgNCUOznPA3YU,178
55
55
  torch_geometric/data/lightning/datamodule.py,sha256=Bn9iaIfE4NWDDWWMqCvBeZ4bIW1Silx_Ol5CPJCliaQ,29242
56
56
  torch_geometric/datasets/__init__.py,sha256=fey-955PyCQXGBeUTNPWwU5uK3PJOEvaY1_fDt1SxXc,5880
57
- torch_geometric/datasets/actor.py,sha256=H8srMdo5qo8eg4LDxEdYcxZi49I_HVDcr8R_pb2W99Q,4461
58
- torch_geometric/datasets/airfrans.py,sha256=7Yt0Xs7jx2NotPT4_9GbpLRWRXYSS5g_4zSENoB_9hs,5684
59
- torch_geometric/datasets/airports.py,sha256=HSZdi6KM_yavppaUl0uWyZ93BEsrtDf9InjPPu9zaUE,3903
60
- torch_geometric/datasets/amazon.py,sha256=aXaLFU67CJ_96wGAE8lW9KEhqt26GWFSDT9PoKO9iLM,3179
61
- torch_geometric/datasets/amazon_book.py,sha256=-r4pYLMoncw3qjNtbtPjs6B3ijTsWo0E14SG5reo6iI,3357
62
- torch_geometric/datasets/amazon_products.py,sha256=RJtmeiRANtCQGNOgUdyo9egbT29ZXWcei2dMK7z6FHQ,3973
63
- torch_geometric/datasets/aminer.py,sha256=9RnS0NvqntHf7bbU84H3Lsvw5vN0WmXS6TfC70DQBrE,5178
64
- torch_geometric/datasets/aqsol.py,sha256=Hi1r44NV44MoRq7hFCiGb93wdwcAwZQfhNW13w4zMdc,5455
65
- torch_geometric/datasets/attributed_graph_dataset.py,sha256=PfmU9FJhqnNRrcGY1pDbqiZzFL1x0K9vHNsB8Tu7GkA,5978
57
+ torch_geometric/datasets/actor.py,sha256=oUxgJIX8bi5hJr1etWNYIFyVQNDDXi1nyVpHGGMEAGQ,4304
58
+ torch_geometric/datasets/airfrans.py,sha256=212gYsk7PvF-qcmvM2YXaOBhFrS79evAGg_sPHXih4w,5439
59
+ torch_geometric/datasets/airports.py,sha256=b3gkv3gY2JkUpmGiz36Z-g7EcnSfU8lBG1YsCOWdJ6k,3758
60
+ torch_geometric/datasets/amazon.py,sha256=zLiAgrd_44LAFb8drsrIphRJNyuWa6TMjZgmoWdf97Y,3005
61
+ torch_geometric/datasets/amazon_book.py,sha256=I-8kRsKgk9M60D4icYDELajlsRwksMLDaHMyn6sBC1Y,3214
62
+ torch_geometric/datasets/amazon_products.py,sha256=-BU4RqIga8LuyCYbKATRsQ4pyDItW4Cb5WEFXqlyqaA,3817
63
+ torch_geometric/datasets/aminer.py,sha256=wVHdKZxp2r56N_NxtvRK6g4gX7HULARtf8EAD0XcBI4,5033
64
+ torch_geometric/datasets/aqsol.py,sha256=4e8hZfpv0ymKj0A7QBJhFtY3oIUCkbMVSorKRgxfhJQ,5223
65
+ torch_geometric/datasets/attributed_graph_dataset.py,sha256=fxg3ISA7JmBJPKo-bYT3K0JMtM-_z6TV9epKMTK251A,5816
66
66
  torch_geometric/datasets/ba2motif_dataset.py,sha256=q4SBYiBcvyhAob7RFa-JQA5tqGNykRQgAvBSTfsU6dw,4258
67
- torch_geometric/datasets/ba_multi_shapes.py,sha256=4cy7WIfuppBJ24QUGovLRah7BkL_qhR3kj4RYeyIJvQ,3700
68
- torch_geometric/datasets/ba_shapes.py,sha256=biuz0NCMNwZUYyQ6f6rwQexHIsTZJeVv7DGj8tl_IO0,3904
67
+ torch_geometric/datasets/ba_multi_shapes.py,sha256=YI8O-fmIzgeUPV4d0HVBRVxTHXr_3ZzUSM4qefLLShI,3500
68
+ torch_geometric/datasets/ba_shapes.py,sha256=sJEQiK3CGlYTdbQBgKeLhO6mY-HRv3nS9Ya_ww4XcXk,3806
69
69
  torch_geometric/datasets/bitcoin_otc.py,sha256=olrsq_Z306-oo17iEQoVif3-CgVIOyVc8twgIMXE0iI,4399
70
70
  torch_geometric/datasets/brca_tgca.py,sha256=2lX9oY6T7aPut8NbXFMWS1c2-_FHqCB4hqUzP4_zFsk,3962
71
71
  torch_geometric/datasets/citation_full.py,sha256=5WT6_iZ1GWuShuYZJErQ3bWNV4bHwZsYYBYztoTxMzs,4458
@@ -181,7 +181,7 @@ torch_geometric/distributed/dist_neighbor_sampler.py,sha256=YrL-NMFOJwHJpF189o4k
181
181
  torch_geometric/distributed/event_loop.py,sha256=wr3iwMYEWOGkBlvC5huD2k5YxisaGE9w1Z-8RcQiIQk,3309
182
182
  torch_geometric/distributed/local_feature_store.py,sha256=CLW37RN0ouDufEs2tY9d2nLLvpxubiT6zgW3LIHAU8k,19058
183
183
  torch_geometric/distributed/local_graph_store.py,sha256=wNHXSS824Kk2HynbtWFXx-W4pl97UUBv6qFHAVqO3W4,8445
184
- torch_geometric/distributed/partition.py,sha256=PGIchzAJ4gu4D46A0BcV2dqKPIPOflfLRRnORW5c8lo,14731
184
+ torch_geometric/distributed/partition.py,sha256=X0BleuY0ROlUtVXKvvz814pJwglZQ2_6OiMi1K0Hhvo,14731
185
185
  torch_geometric/distributed/rpc.py,sha256=t0Ts4tzUE0LQyBr71i2iBjQDLe9NWkmVRf7C4xOllJc,5753
186
186
  torch_geometric/distributed/utils.py,sha256=FGrr3qw7hx7EQaIjjqasurloCFJ9q_0jt8jdSIUjBeM,6567
187
187
  torch_geometric/explain/__init__.py,sha256=pRxVB33zsxhED1StRWdHboQWh3e06__g9N298Hzi42Y,359
@@ -618,6 +618,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
618
618
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
619
619
  torch_geometric/visualization/graph.py,sha256=SvbdVx5Zmuy_WSSA4-WWCkqAcCSHVe84mjMfsEWbZCs,4813
620
620
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
621
- pyg_nightly-2.7.0.dev20241008.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
- pyg_nightly-2.7.0.dev20241008.dist-info/METADATA,sha256=oYG1hbd3oyhDbSymjoQedXDVH11955Z7P8ida0kYvRk,63068
623
- pyg_nightly-2.7.0.dev20241008.dist-info/RECORD,,
621
+ pyg_nightly-2.7.0.dev20241010.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
+ pyg_nightly-2.7.0.dev20241010.dist-info/METADATA,sha256=aRuVSXDDXiZn2ZDyo6sKBfVE9lHB22P52bj7lolRD0k,63018
623
+ pyg_nightly-2.7.0.dev20241010.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20241008'
33
+ __version__ = '2.7.0.dev20241010'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -27,6 +27,11 @@ def compile(
27
27
  This function has the same signature as :meth:`torch.compile` (see
28
28
  `here <https://pytorch.org/docs/stable/generated/torch.compile.html>`__).
29
29
 
30
+ Args:
31
+ model: The model to compile.
32
+ *args: Additional arguments of :meth:`torch.compile`.
33
+ **kwargs: Additional keyword arguments of :meth:`torch.compile`.
34
+
30
35
  .. note::
31
36
  :meth:`torch_geometric.compile` is deprecated in favor of
32
37
  :meth:`torch.compile`.
@@ -19,17 +19,15 @@ class Actor(InMemoryDataset):
19
19
  actor's Wikipedia.
20
20
 
21
21
  Args:
22
- root (str): Root directory where the dataset should be saved.
23
- transform (callable, optional): A function/transform that takes in an
22
+ root: Root directory where the dataset should be saved.
23
+ transform: A function/transform that takes in an
24
24
  :obj:`torch_geometric.data.Data` object and returns a transformed
25
25
  version. The data object will be transformed before every access.
26
- (default: :obj:`None`)
27
- pre_transform (callable, optional): A function/transform that takes in
28
- an :obj:`torch_geometric.data.Data` object and returns a
29
- transformed version. The data object will be transformed before
30
- being saved to disk. (default: :obj:`None`)
31
- force_reload (bool, optional): Whether to re-process the dataset.
32
- (default: :obj:`False`)
26
+ pre_transform: A function/transform that takes in an
27
+ :class:`torch_geometric.data.Data` object and returns a transformed
28
+ version. The data object will be transformed before being saved to
29
+ disk.
30
+ force_reload: Whether to re-process the dataset.
33
31
 
34
32
  **STATS:**
35
33
 
@@ -46,26 +46,24 @@ class AirfRANS(InMemoryDataset):
46
46
  :obj:`torch_geometric.transforms.RadiusGraph` transform.
47
47
 
48
48
  Args:
49
- root (str): Root directory where the dataset should be saved.
50
- task (str): The task to study (:obj:`"full"`, :obj:`"scarce"`,
49
+ root: Root directory where the dataset should be saved.
50
+ task: The task to study (:obj:`"full"`, :obj:`"scarce"`,
51
51
  :obj:`"reynolds"`, :obj:`"aoa"`) that defines the utilized training
52
52
  and test splits.
53
- train (bool, optional): If :obj:`True`, loads the training dataset,
54
- otherwise the test dataset. (default: :obj:`True`)
55
- transform (callable, optional): A function/transform that takes in an
56
- :obj:`torch_geometric.data.Data` object and returns a transformed
53
+ train: If :obj:`True`, loads the training dataset, otherwise the test
54
+ dataset.
55
+ transform: A function/transform that takes in an
56
+ :class:`torch_geometric.data.Data` object and returns a transformed
57
57
  version. The data object will be transformed before every access.
58
- (default: :obj:`None`)
59
- pre_transform (callable, optional): A function/transform that takes in
60
- an :obj:`torch_geometric.data.Data` object and returns a
58
+ pre_transform: A function/transform that takes in an
59
+ :class:`torch_geometric.data.Data` object and returns a
61
60
  transformed version. The data object will be transformed before
62
- being saved to disk. (default: :obj:`None`)
63
- pre_filter (callable, optional): A function that takes in an
61
+ being saved to disk.
62
+ pre_filter: A function that takes in an
64
63
  :obj:`torch_geometric.data.Data` object and returns a boolean
65
64
  value, indicating whether the data object should be included in the
66
- final dataset. (default: :obj:`None`)
67
- force_reload (bool, optional): Whether to re-process the dataset.
68
- (default: :obj:`False`)
65
+ final dataset.
66
+ force_reload: Whether to re-process the dataset.
69
67
 
70
68
  **STATS:**
71
69
 
@@ -14,22 +14,20 @@ class Airports(InMemoryDataset):
14
14
  and labels correspond to activity levels.
15
15
  Features are given by one-hot encoded node identifiers, as described in the
16
16
  `"GraLSP: Graph Neural Networks with Local Structural Patterns"
17
- ` <https://arxiv.org/abs/1911.07675>`_ paper.
17
+ <https://arxiv.org/abs/1911.07675>`_ paper.
18
18
 
19
19
  Args:
20
- root (str): Root directory where the dataset should be saved.
21
- name (str): The name of the dataset (:obj:`"USA"`, :obj:`"Brazil"`,
20
+ root: Root directory where the dataset should be saved.
21
+ name: The name of the dataset (:obj:`"USA"`, :obj:`"Brazil"`,
22
22
  :obj:`"Europe"`).
23
- transform (callable, optional): A function/transform that takes in an
24
- :obj:`torch_geometric.data.Data` object and returns a transformed
23
+ transform: A function/transform that takes in an
24
+ :class:`torch_geometric.data.Data` object and returns a transformed
25
25
  version. The data object will be transformed before every access.
26
- (default: :obj:`None`)
27
26
  pre_transform (callable, optional): A function/transform that takes in
28
- an :obj:`torch_geometric.data.Data` object and returns a
27
+ :class:`torch_geometric.data.Data` object and returns a
29
28
  transformed version. The data object will be transformed before
30
- being saved to disk. (default: :obj:`None`)
31
- force_reload (bool, optional): Whether to re-process the dataset.
32
- (default: :obj:`False`)
29
+ being saved to disk.
30
+ force_reload: Whether to re-process the dataset.
33
31
  """
34
32
  edge_url = ('https://github.com/leoribeiro/struc2vec/'
35
33
  'raw/master/graph/{}-airports.edgelist')
@@ -15,19 +15,16 @@ class Amazon(InMemoryDataset):
15
15
  map goods to their respective product category.
16
16
 
17
17
  Args:
18
- root (str): Root directory where the dataset should be saved.
19
- name (str): The name of the dataset (:obj:`"Computers"`,
20
- :obj:`"Photo"`).
21
- transform (callable, optional): A function/transform that takes in an
22
- :obj:`torch_geometric.data.Data` object and returns a transformed
18
+ root: Root directory where the dataset should be saved.
19
+ name: The name of the dataset (:obj:`"Computers"`, :obj:`"Photo"`).
20
+ transform: A function/transform that takes in a
21
+ :class:`torch_geometric.data.Data` object and returns a transformed
23
22
  version. The data object will be transformed before every access.
24
- (default: :obj:`None`)
25
- pre_transform (callable, optional): A function/transform that takes in
26
- an :obj:`torch_geometric.data.Data` object and returns a
23
+ pre_transform: A function/transform that takes in an
24
+ :class:`torch_geometric.data.Data` object and returns a
27
25
  transformed version. The data object will be transformed before
28
- being saved to disk. (default: :obj:`None`)
29
- force_reload (bool, optional): Whether to re-process the dataset.
30
- (default: :obj:`False`)
26
+ being saved to disk.
27
+ force_reload: Whether to re-process the dataset.
31
28
 
32
29
  **STATS:**
33
30
 
@@ -14,17 +14,16 @@ class AmazonBook(InMemoryDataset):
14
14
  No labels or features are provided.
15
15
 
16
16
  Args:
17
- root (str): Root directory where the dataset should be saved.
18
- transform (callable, optional): A function/transform that takes in an
19
- :obj:`torch_geometric.data.HeteroData` object and returns a
17
+ root: Root directory where the dataset should be saved.
18
+ transform: A function/transform that takes in an
19
+ :class:`torch_geometric.data.HeteroData` object and returns a
20
20
  transformed version. The data object will be transformed before
21
- every access. (default: :obj:`None`)
22
- pre_transform (callable, optional): A function/transform that takes in
23
- an :obj:`torch_geometric.data.HeteroData` object and returns a
21
+ every access.
22
+ pre_transform: A function/transform that takes in an
23
+ :class:`torch_geometric.data.HeteroData` object and returns a
24
24
  transformed version. The data object will be transformed before
25
- being saved to disk. (default: :obj:`None`)
26
- force_reload (bool, optional): Whether to re-process the dataset.
27
- (default: :obj:`False`)
25
+ being saved to disk.
26
+ force_reload: Whether to re-process the dataset.
28
27
  """
29
28
  url = ('https://raw.githubusercontent.com/gusye1234/LightGCN-PyTorch/'
30
29
  'master/data/amazon-book')
@@ -14,17 +14,15 @@ class AmazonProducts(InMemoryDataset):
14
14
  containing products and its categories.
15
15
 
16
16
  Args:
17
- root (str): Root directory where the dataset should be saved.
18
- transform (callable, optional): A function/transform that takes in an
19
- :obj:`torch_geometric.data.Data` object and returns a transformed
17
+ root: Root directory where the dataset should be saved.
18
+ transform: A function/transform that takes in an
19
+ :class:`torch_geometric.data.Data` object and returns a transformed
20
20
  version. The data object will be transformed before every access.
21
- (default: :obj:`None`)
22
- pre_transform (callable, optional): A function/transform that takes in
23
- an :obj:`torch_geometric.data.Data` object and returns a
21
+ pre_transform: A function/transform that takes in a
22
+ :class:`torch_geometric.data.Data` object and returns a
24
23
  transformed version. The data object will be transformed before
25
- being saved to disk. (default: :obj:`None`)
26
- force_reload (bool, optional): Whether to re-process the dataset.
27
- (default: :obj:`False`)
24
+ being saved to disk.
25
+ force_reload: Whether to re-process the dataset.
28
26
 
29
27
  **STATS:**
30
28
 
@@ -24,17 +24,16 @@ class AMiner(InMemoryDataset):
24
24
  truth labels for a subset of nodes.
25
25
 
26
26
  Args:
27
- root (str): Root directory where the dataset should be saved.
28
- transform (callable, optional): A function/transform that takes in an
29
- :obj:`torch_geometric.data.HeteroData` object and returns a
27
+ root: Root directory where the dataset should be saved.
28
+ transform: A function/transform that takes in a
29
+ :class:`torch_geometric.data.HeteroData` object and returns a
30
30
  transformed version. The data object will be transformed before
31
- every access. (default: :obj:`None`)
32
- pre_transform (callable, optional): A function/transform that takes in
33
- an :obj:`torch_geometric.data.HeteroData` object and returns a
31
+ every access.
32
+ pre_transform: A function/transform that takes in a
33
+ :class:`torch_geometric.data.HeteroData` object and returns a
34
34
  transformed version. The data object will be transformed before
35
- being saved to disk. (default: :obj:`None`)
36
- force_reload (bool, optional): Whether to re-process the dataset.
37
- (default: :obj:`False`)
35
+ being saved to disk.
36
+ force_reload: Whether to re-process the dataset.
38
37
  """
39
38
 
40
39
  url = 'https://www.dropbox.com/s/1bnz8r7mofx0osf/net_aminer.zip?dl=1'
@@ -30,25 +30,22 @@ class AQSOL(InMemoryDataset):
30
30
  the :class:`~torch_geometric.datasets.ZINC` dataset.
31
31
 
32
32
  Args:
33
- root (str): Root directory where the dataset should be saved.
34
- split (str, optional): If :obj:`"train"`, loads the training dataset.
33
+ root: Root directory where the dataset should be saved.
34
+ split: If :obj:`"train"`, loads the training dataset.
35
35
  If :obj:`"val"`, loads the validation dataset.
36
36
  If :obj:`"test"`, loads the test dataset.
37
- (default: :obj:`"train"`)
38
- transform (callable, optional): A function/transform that takes in an
39
- :obj:`torch_geometric.data.Data` object and returns a transformed
37
+ transform: A function/transform that takes in a
38
+ :class:`torch_geometric.data.Data` object and returns a transformed
40
39
  version. The data object will be transformed before every access.
41
- (default: :obj:`None`)
42
- pre_transform (callable, optional): A function/transform that takes in
43
- an :obj:`torch_geometric.data.Data` object and returns a
40
+ pre_transform: A function/transform that takes in a
41
+ :class:`torch_geometric.data.Data` object and returns a
44
42
  transformed version. The data object will be transformed before
45
- being saved to disk. (default: :obj:`None`)
43
+ being saved to disk.
46
44
  pre_filter (callable, optional): A function that takes in an
47
- :obj:`torch_geometric.data.Data` object and returns a boolean
45
+ :class:`torch_geometric.data.Data` object and returns a boolean
48
46
  value, indicating whether the data object should be included in
49
- the final dataset. (default: :obj:`None`)
50
- force_reload (bool, optional): Whether to re-process the dataset.
51
- (default: :obj:`False`)
47
+ the final dataset.
48
+ force_reload: Whether to re-process the dataset.
52
49
 
53
50
  **STATS:**
54
51
 
@@ -19,21 +19,19 @@ class AttributedGraphDataset(InMemoryDataset):
19
19
  <https://arxiv.org/abs/2009.00826>`_ paper.
20
20
 
21
21
  Args:
22
- root (str): Root directory where the dataset should be saved.
23
- name (str): The name of the dataset (:obj:`"Wiki"`, :obj:`"Cora"`
22
+ root: Root directory where the dataset should be saved.
23
+ name: The name of the dataset (:obj:`"Wiki"`, :obj:`"Cora"`,
24
24
  :obj:`"CiteSeer"`, :obj:`"PubMed"`, :obj:`"BlogCatalog"`,
25
25
  :obj:`"PPI"`, :obj:`"Flickr"`, :obj:`"Facebook"`, :obj:`"Twitter"`,
26
26
  :obj:`"TWeibo"`, :obj:`"MAG"`).
27
- transform (callable, optional): A function/transform that takes in an
28
- :obj:`torch_geometric.data.Data` object and returns a transformed
27
+ transform: A function/transform that takes in a
28
+ :class:`torch_geometric.data.Data` object and returns a transformed
29
29
  version. The data object will be transformed before every access.
30
- (default: :obj:`None`)
31
- pre_transform (callable, optional): A function/transform that takes in
32
- an :obj:`torch_geometric.data.Data` object and returns a
30
+ pre_transform: A function/transform that takes in a
31
+ :class:`torch_geometric.data.Data` object and returns a
33
32
  transformed version. The data object will be transformed before
34
- being saved to disk. (default: :obj:`None`)
35
- force_reload (bool, optional): Whether to re-process the dataset.
36
- (default: :obj:`False`)
33
+ being saved to disk.
34
+ force_reload: Whether to re-process the dataset.
37
35
 
38
36
  **STATS:**
39
37
 
@@ -25,21 +25,19 @@ class BAMultiShapesDataset(InMemoryDataset):
25
25
  This dataset is pre-computed from the official implementation.
26
26
 
27
27
  Args:
28
- root (str): Root directory where the dataset should be saved.
29
- transform (callable, optional): A function/transform that takes in an
30
- :obj:`torch_geometric.data.Data` object and returns a transformed
28
+ root: Root directory where the dataset should be saved.
29
+ transform: A function/transform that takes in a
30
+ :class:`torch_geometric.data.Data` object and returns a transformed
31
31
  version. The data object will be transformed before every access.
32
- (default: :obj:`None`)
33
- pre_transform (callable, optional): A function/transform that takes in
34
- an :obj:`torch_geometric.data.Data` object and returns a
32
+ pre_transform: A function/transform that takes in a
33
+ :class:`torch_geometric.data.Data` object and returns a
35
34
  transformed version. The data object will be transformed before
36
- being saved to disk. (default: :obj:`None`)
37
- pre_filter (callable, optional): A function that takes in an
38
- :obj:`torch_geometric.data.Data` object and returns a boolean
35
+ being saved to disk.
36
+ pre_filter: A function that takes in a
37
+ :class:`torch_geometric.data.Data` object and returns a boolean
39
38
  value, indicating whether the data object should be included in the
40
- final dataset. (default: :obj:`None`)
41
- force_reload (bool, optional): Whether to re-process the dataset.
42
- (default: :obj:`False`)
39
+ final dataset.
40
+ force_reload: Whether to re-process the dataset.
43
41
 
44
42
  **STATS:**
45
43
 
@@ -30,15 +30,14 @@ class BAShapes(InMemoryDataset):
30
30
  :class:`torch_geometric.datasets.graph_generator.BAGraph` instead.
31
31
 
32
32
  Args:
33
- connection_distribution (str, optional): Specifies how the houses
34
- and the BA graph get connected. Valid inputs are :obj:`"random"`
33
+ connection_distribution: Specifies how the houses and the BA graph get
34
+ connected. Valid inputs are :obj:`"random"`
35
35
  (random BA graph nodes are selected for connection to the houses),
36
36
  and :obj:`"uniform"` (uniformly distributed BA graph nodes are
37
- selected for connection to the houses). (default: :obj:`"random"`)
38
- transform (callable, optional): A function/transform that takes in an
39
- :obj:`torch_geometric.data.Data` object and returns a transformed
37
+ selected for connection to the houses).
38
+ transform: A function/transform that takes in a
39
+ :class:`torch_geometric.data.Data` object and returns a transformed
40
40
  version. The data object will be transformed before every access.
41
- (default: :obj:`None`)
42
41
  """
43
42
  def __init__(
44
43
  self,
@@ -3,7 +3,7 @@ import logging
3
3
  import os
4
4
  import os.path as osp
5
5
  from collections import defaultdict
6
- from typing import List, Optional, Union
6
+ from typing import Dict, List, Optional, Tuple, Union
7
7
 
8
8
  import torch
9
9
 
@@ -12,7 +12,7 @@ from torch_geometric.data import Data, HeteroData
12
12
  from torch_geometric.io import fs
13
13
  from torch_geometric.loader.cluster import ClusterData
14
14
  from torch_geometric.sampler.utils import sort_csc
15
- from torch_geometric.typing import Dict, EdgeType, EdgeTypeStr, NodeType, Tuple
15
+ from torch_geometric.typing import EdgeType, EdgeTypeStr, NodeType
16
16
 
17
17
 
18
18
  class Partitioner: