pyg-nightly 2.7.0.dev20240917__py3-none-any.whl → 2.7.0.dev20240919__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyg-nightly
3
- Version: 2.7.0.dev20240917
3
+ Version: 2.7.0.dev20240919
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
@@ -1,8 +1,8 @@
1
- torch_geometric/__init__.py,sha256=Ms3q9V39FTb0K8UreIEu0gAcm4yuZWF-3jao2sJGkjA,1904
1
+ torch_geometric/__init__.py,sha256=d6s6tGid7QDR9lUPrNucLaFiaVxgbUm_QgaXl_A1zHQ,1904
2
2
  torch_geometric/_compile.py,sha256=0HAdz6MGmyrgi4g6P-PorTg8dPIKx3Jo4zVJavrlfX0,1139
3
3
  torch_geometric/_onnx.py,sha256=V9ffrIKSqhDw6xUZ12lkuSfNs48cQp2EeJ6Z19GfnVw,349
4
4
  torch_geometric/backend.py,sha256=lVaf7aLoVaB3M-UcByUJ1G4T4FOK6LXAg0CF4W3E8jo,1575
5
- torch_geometric/config_mixin.py,sha256=fzrIB5wqxHsWgqmgi4P1HOCWDvCxmQ1RCrtMYZePklQ,4138
5
+ torch_geometric/config_mixin.py,sha256=GxSa_skJpL17H43rriZaeFkhmLzODrQoHHIzD83i-Vk,4244
6
6
  torch_geometric/config_store.py,sha256=zdMzlgBpUmBkPovpYQh5fMNwTZLDq2OneqX47QEx7zk,16818
7
7
  torch_geometric/debug.py,sha256=cLyH9OaL2v7POyW-80b19w-ctA7a_5EZsS4aUF1wc2U,1295
8
8
  torch_geometric/deprecation.py,sha256=dWRymDIUkUVI2MeEmBG5WF4R6jObZeseSBV9G6FNfjc,858
@@ -149,7 +149,7 @@ torch_geometric/datasets/tosca.py,sha256=nUSF8NQT1GlkwWQLshjWmr8xORsvRHzzIqhUyDC
149
149
  torch_geometric/datasets/tu_dataset.py,sha256=14OSaXBgVwT1dX2h1wZ3xVIwoo0GQBEfR3yWh6Q0VF0,7847
150
150
  torch_geometric/datasets/twitch.py,sha256=qfEerf-Uaojx2ZvegENowdG4E7RoUT_HUO9xtULadvo,3658
151
151
  torch_geometric/datasets/upfd.py,sha256=crqO8uQNz1wC1JOn4prSs8iOGv9LuLK3dZf_KUV9tUE,7010
152
- torch_geometric/datasets/web_qsp_dataset.py,sha256=OusHv0DcvDgCjUbBtkhPzwm2pdPlyG98BSzaQPv_GP8,8451
152
+ torch_geometric/datasets/web_qsp_dataset.py,sha256=3f2x9XlbC1QhEsr_9hoQHCE9_7f9Poy1xpsBpONSY6s,8614
153
153
  torch_geometric/datasets/webkb.py,sha256=beC1kWeW7cIjYwWyaINQSk-3lmVR85Lus7cKZniHp8Y,4879
154
154
  torch_geometric/datasets/wikics.py,sha256=iTzYif1WvbMXnMdhPMfvrkVaAbnM009WiB_f_JWZqhU,3879
155
155
  torch_geometric/datasets/wikidata.py,sha256=9mYShF_HlpTmcdLpiaP_tYJ9eQtUOu5vRPvohN6RXqI,4979
@@ -618,6 +618,6 @@ torch_geometric/utils/undirected.py,sha256=H_nfpI0_WluOG6VfjPyldvcjL4w5USAKWu2x5
618
618
  torch_geometric/visualization/__init__.py,sha256=PyR_4K5SafsJrBr6qWrkjKr6GBL1b7FtZybyXCDEVwY,154
619
619
  torch_geometric/visualization/graph.py,sha256=SvbdVx5Zmuy_WSSA4-WWCkqAcCSHVe84mjMfsEWbZCs,4813
620
620
  torch_geometric/visualization/influence.py,sha256=CWMvuNA_Nf1sfbJmQgn58yS4OFpeKXeZPe7kEuvkUBw,477
621
- pyg_nightly-2.7.0.dev20240917.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
- pyg_nightly-2.7.0.dev20240917.dist-info/METADATA,sha256=Idok0_UPTxAoz3zn-AAOgAO1847en27Yl9RjtIkwLu0,63068
623
- pyg_nightly-2.7.0.dev20240917.dist-info/RECORD,,
621
+ pyg_nightly-2.7.0.dev20240919.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
622
+ pyg_nightly-2.7.0.dev20240919.dist-info/METADATA,sha256=DJSk93-OX7Uq_8xrc9Z6dSyPDxUPFczjFjWcfPmqSrM,63068
623
+ pyg_nightly-2.7.0.dev20240919.dist-info/RECORD,,
@@ -30,7 +30,7 @@ from .lazy_loader import LazyLoader
30
30
  contrib = LazyLoader('contrib', globals(), 'torch_geometric.contrib')
31
31
  graphgym = LazyLoader('graphgym', globals(), 'torch_geometric.graphgym')
32
32
 
33
- __version__ = '2.7.0.dev20240917'
33
+ __version__ = '2.7.0.dev20240919'
34
34
 
35
35
  __all__ = [
36
36
  'Index',
@@ -82,7 +82,10 @@ def _recursive_from_config(value: Any) -> Any:
82
82
  cls: Any = None
83
83
  if is_dataclass(value):
84
84
  if getattr(value, '_target_', None):
85
- cls = _locate_cls(value._target_) # type: ignore[attr-defined]
85
+ try:
86
+ cls = _locate_cls(value._target_) # type: ignore[attr-defined]
87
+ except ImportError:
88
+ pass # Keep the dataclass as it is.
86
89
  else:
87
90
  cls = class_from_dataclass(value.__class__)
88
91
  elif isinstance(value, dict) and '_target_' in value:
@@ -196,8 +196,10 @@ class WebQSPDataset(InMemoryDataset):
196
196
  nodes = pd.DataFrame([{
197
197
  "node_id": v,
198
198
  "node_attr": k,
199
- } for k, v in raw_nodes.items()])
200
- edges = pd.DataFrame(raw_edges)
199
+ } for k, v in raw_nodes.items()],
200
+ columns=["node_id", "node_attr"])
201
+ edges = pd.DataFrame(raw_edges,
202
+ columns=["src", "edge_attr", "dst"])
201
203
 
202
204
  nodes.node_attr = nodes.node_attr.fillna("")
203
205
  x = model.encode(
@@ -213,7 +215,7 @@ class WebQSPDataset(InMemoryDataset):
213
215
  edge_index = torch.tensor([
214
216
  edges.src.tolist(),
215
217
  edges.dst.tolist(),
216
- ])
218
+ ], dtype=torch.long)
217
219
 
218
220
  question = f"Question: {example['question']}\nAnswer: "
219
221
  label = ('|').join(example['answer']).lower()