pyg-nightly 2.6.0.dev20240319__py3-none-any.whl → 2.7.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (226) hide show
  1. {pyg_nightly-2.6.0.dev20240319.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/METADATA +31 -47
  2. {pyg_nightly-2.6.0.dev20240319.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/RECORD +226 -199
  3. {pyg_nightly-2.6.0.dev20240319.dist-info → pyg_nightly-2.7.0.dev20250114.dist-info}/WHEEL +1 -1
  4. torch_geometric/__init__.py +28 -1
  5. torch_geometric/_compile.py +8 -1
  6. torch_geometric/_onnx.py +14 -0
  7. torch_geometric/config_mixin.py +113 -0
  8. torch_geometric/config_store.py +28 -19
  9. torch_geometric/data/__init__.py +24 -1
  10. torch_geometric/data/batch.py +2 -2
  11. torch_geometric/data/collate.py +8 -2
  12. torch_geometric/data/data.py +16 -8
  13. torch_geometric/data/database.py +61 -15
  14. torch_geometric/data/dataset.py +14 -6
  15. torch_geometric/data/feature_store.py +25 -42
  16. torch_geometric/data/graph_store.py +1 -5
  17. torch_geometric/data/hetero_data.py +18 -9
  18. torch_geometric/data/in_memory_dataset.py +2 -4
  19. torch_geometric/data/large_graph_indexer.py +677 -0
  20. torch_geometric/data/lightning/datamodule.py +4 -4
  21. torch_geometric/data/separate.py +6 -1
  22. torch_geometric/data/storage.py +17 -7
  23. torch_geometric/data/summary.py +14 -4
  24. torch_geometric/data/temporal.py +1 -2
  25. torch_geometric/datasets/__init__.py +17 -2
  26. torch_geometric/datasets/actor.py +9 -11
  27. torch_geometric/datasets/airfrans.py +15 -18
  28. torch_geometric/datasets/airports.py +10 -12
  29. torch_geometric/datasets/amazon.py +8 -11
  30. torch_geometric/datasets/amazon_book.py +9 -10
  31. torch_geometric/datasets/amazon_products.py +9 -10
  32. torch_geometric/datasets/aminer.py +8 -9
  33. torch_geometric/datasets/aqsol.py +10 -13
  34. torch_geometric/datasets/attributed_graph_dataset.py +10 -12
  35. torch_geometric/datasets/ba_multi_shapes.py +10 -12
  36. torch_geometric/datasets/ba_shapes.py +5 -6
  37. torch_geometric/datasets/bitcoin_otc.py +1 -1
  38. torch_geometric/datasets/brca_tgca.py +1 -1
  39. torch_geometric/datasets/cornell.py +145 -0
  40. torch_geometric/datasets/dblp.py +2 -1
  41. torch_geometric/datasets/dbp15k.py +2 -2
  42. torch_geometric/datasets/fake.py +1 -3
  43. torch_geometric/datasets/flickr.py +2 -1
  44. torch_geometric/datasets/freebase.py +1 -1
  45. torch_geometric/datasets/gdelt_lite.py +3 -2
  46. torch_geometric/datasets/ged_dataset.py +3 -2
  47. torch_geometric/datasets/git_mol_dataset.py +263 -0
  48. torch_geometric/datasets/gnn_benchmark_dataset.py +11 -10
  49. torch_geometric/datasets/hgb_dataset.py +8 -8
  50. torch_geometric/datasets/imdb.py +2 -1
  51. torch_geometric/datasets/karate.py +3 -2
  52. torch_geometric/datasets/last_fm.py +2 -1
  53. torch_geometric/datasets/linkx_dataset.py +4 -3
  54. torch_geometric/datasets/lrgb.py +3 -5
  55. torch_geometric/datasets/malnet_tiny.py +4 -3
  56. torch_geometric/datasets/mnist_superpixels.py +2 -3
  57. torch_geometric/datasets/molecule_gpt_dataset.py +485 -0
  58. torch_geometric/datasets/molecule_net.py +15 -3
  59. torch_geometric/datasets/motif_generator/base.py +0 -1
  60. torch_geometric/datasets/neurograph.py +1 -3
  61. torch_geometric/datasets/ogb_mag.py +1 -1
  62. torch_geometric/datasets/opf.py +239 -0
  63. torch_geometric/datasets/ose_gvcs.py +1 -1
  64. torch_geometric/datasets/pascal.py +11 -9
  65. torch_geometric/datasets/pascal_pf.py +1 -1
  66. torch_geometric/datasets/pcpnet_dataset.py +1 -1
  67. torch_geometric/datasets/pcqm4m.py +10 -3
  68. torch_geometric/datasets/ppi.py +1 -1
  69. torch_geometric/datasets/qm9.py +8 -7
  70. torch_geometric/datasets/rcdd.py +4 -4
  71. torch_geometric/datasets/reddit.py +2 -1
  72. torch_geometric/datasets/reddit2.py +2 -1
  73. torch_geometric/datasets/rel_link_pred_dataset.py +3 -3
  74. torch_geometric/datasets/s3dis.py +5 -3
  75. torch_geometric/datasets/shapenet.py +3 -3
  76. torch_geometric/datasets/shrec2016.py +2 -2
  77. torch_geometric/datasets/snap_dataset.py +7 -1
  78. torch_geometric/datasets/tag_dataset.py +350 -0
  79. torch_geometric/datasets/upfd.py +2 -1
  80. torch_geometric/datasets/web_qsp_dataset.py +246 -0
  81. torch_geometric/datasets/webkb.py +2 -2
  82. torch_geometric/datasets/wikics.py +1 -1
  83. torch_geometric/datasets/wikidata.py +3 -2
  84. torch_geometric/datasets/wikipedia_network.py +2 -2
  85. torch_geometric/datasets/willow_object_class.py +1 -1
  86. torch_geometric/datasets/word_net.py +2 -2
  87. torch_geometric/datasets/yelp.py +2 -1
  88. torch_geometric/datasets/zinc.py +1 -1
  89. torch_geometric/device.py +42 -0
  90. torch_geometric/distributed/local_feature_store.py +3 -2
  91. torch_geometric/distributed/local_graph_store.py +2 -1
  92. torch_geometric/distributed/partition.py +9 -8
  93. torch_geometric/edge_index.py +616 -438
  94. torch_geometric/explain/algorithm/base.py +0 -1
  95. torch_geometric/explain/algorithm/graphmask_explainer.py +1 -2
  96. torch_geometric/explain/algorithm/pg_explainer.py +1 -1
  97. torch_geometric/explain/explanation.py +2 -2
  98. torch_geometric/graphgym/checkpoint.py +2 -1
  99. torch_geometric/graphgym/logger.py +4 -4
  100. torch_geometric/graphgym/loss.py +1 -1
  101. torch_geometric/graphgym/utils/agg_runs.py +6 -6
  102. torch_geometric/index.py +826 -0
  103. torch_geometric/inspector.py +8 -3
  104. torch_geometric/io/fs.py +28 -2
  105. torch_geometric/io/npz.py +2 -1
  106. torch_geometric/io/off.py +2 -2
  107. torch_geometric/io/sdf.py +2 -2
  108. torch_geometric/io/tu.py +4 -5
  109. torch_geometric/loader/__init__.py +4 -0
  110. torch_geometric/loader/cluster.py +10 -4
  111. torch_geometric/loader/graph_saint.py +2 -1
  112. torch_geometric/loader/ibmb_loader.py +12 -4
  113. torch_geometric/loader/mixin.py +1 -1
  114. torch_geometric/loader/neighbor_loader.py +1 -1
  115. torch_geometric/loader/neighbor_sampler.py +2 -2
  116. torch_geometric/loader/prefetch.py +1 -1
  117. torch_geometric/loader/rag_loader.py +107 -0
  118. torch_geometric/loader/utils.py +8 -7
  119. torch_geometric/loader/zip_loader.py +10 -0
  120. torch_geometric/metrics/__init__.py +11 -2
  121. torch_geometric/metrics/link_pred.py +159 -34
  122. torch_geometric/nn/aggr/__init__.py +4 -0
  123. torch_geometric/nn/aggr/attention.py +0 -2
  124. torch_geometric/nn/aggr/base.py +2 -4
  125. torch_geometric/nn/aggr/patch_transformer.py +143 -0
  126. torch_geometric/nn/aggr/set_transformer.py +1 -1
  127. torch_geometric/nn/aggr/variance_preserving.py +33 -0
  128. torch_geometric/nn/attention/__init__.py +5 -1
  129. torch_geometric/nn/attention/qformer.py +71 -0
  130. torch_geometric/nn/conv/collect.jinja +7 -4
  131. torch_geometric/nn/conv/cugraph/base.py +8 -12
  132. torch_geometric/nn/conv/edge_conv.py +3 -2
  133. torch_geometric/nn/conv/fused_gat_conv.py +1 -1
  134. torch_geometric/nn/conv/gat_conv.py +35 -7
  135. torch_geometric/nn/conv/gatv2_conv.py +36 -6
  136. torch_geometric/nn/conv/general_conv.py +1 -1
  137. torch_geometric/nn/conv/graph_conv.py +21 -3
  138. torch_geometric/nn/conv/gravnet_conv.py +3 -2
  139. torch_geometric/nn/conv/hetero_conv.py +3 -3
  140. torch_geometric/nn/conv/hgt_conv.py +1 -1
  141. torch_geometric/nn/conv/message_passing.py +138 -87
  142. torch_geometric/nn/conv/mixhop_conv.py +1 -1
  143. torch_geometric/nn/conv/propagate.jinja +9 -1
  144. torch_geometric/nn/conv/rgcn_conv.py +5 -5
  145. torch_geometric/nn/conv/spline_conv.py +4 -4
  146. torch_geometric/nn/conv/x_conv.py +3 -2
  147. torch_geometric/nn/dense/linear.py +11 -6
  148. torch_geometric/nn/fx.py +3 -3
  149. torch_geometric/nn/model_hub.py +3 -1
  150. torch_geometric/nn/models/__init__.py +10 -2
  151. torch_geometric/nn/models/deep_graph_infomax.py +1 -2
  152. torch_geometric/nn/models/dimenet_utils.py +5 -7
  153. torch_geometric/nn/models/g_retriever.py +230 -0
  154. torch_geometric/nn/models/git_mol.py +336 -0
  155. torch_geometric/nn/models/glem.py +385 -0
  156. torch_geometric/nn/models/gnnff.py +0 -1
  157. torch_geometric/nn/models/graph_unet.py +12 -3
  158. torch_geometric/nn/models/jumping_knowledge.py +63 -4
  159. torch_geometric/nn/models/lightgcn.py +1 -1
  160. torch_geometric/nn/models/metapath2vec.py +5 -5
  161. torch_geometric/nn/models/molecule_gpt.py +222 -0
  162. torch_geometric/nn/models/node2vec.py +2 -3
  163. torch_geometric/nn/models/schnet.py +2 -1
  164. torch_geometric/nn/models/signed_gcn.py +3 -3
  165. torch_geometric/nn/module_dict.py +2 -2
  166. torch_geometric/nn/nlp/__init__.py +9 -0
  167. torch_geometric/nn/nlp/llm.py +322 -0
  168. torch_geometric/nn/nlp/sentence_transformer.py +134 -0
  169. torch_geometric/nn/nlp/vision_transformer.py +33 -0
  170. torch_geometric/nn/norm/batch_norm.py +1 -1
  171. torch_geometric/nn/parameter_dict.py +2 -2
  172. torch_geometric/nn/pool/__init__.py +21 -5
  173. torch_geometric/nn/pool/cluster_pool.py +145 -0
  174. torch_geometric/nn/pool/connect/base.py +0 -1
  175. torch_geometric/nn/pool/edge_pool.py +1 -1
  176. torch_geometric/nn/pool/graclus.py +4 -2
  177. torch_geometric/nn/pool/pool.py +8 -2
  178. torch_geometric/nn/pool/select/base.py +0 -1
  179. torch_geometric/nn/pool/voxel_grid.py +3 -2
  180. torch_geometric/nn/resolver.py +1 -1
  181. torch_geometric/nn/sequential.jinja +10 -23
  182. torch_geometric/nn/sequential.py +204 -78
  183. torch_geometric/nn/summary.py +1 -1
  184. torch_geometric/nn/to_hetero_with_bases_transformer.py +19 -19
  185. torch_geometric/profile/__init__.py +2 -0
  186. torch_geometric/profile/nvtx.py +66 -0
  187. torch_geometric/profile/profiler.py +30 -19
  188. torch_geometric/resolver.py +1 -1
  189. torch_geometric/sampler/base.py +34 -13
  190. torch_geometric/sampler/neighbor_sampler.py +11 -10
  191. torch_geometric/sampler/utils.py +1 -1
  192. torch_geometric/template.py +1 -0
  193. torch_geometric/testing/__init__.py +6 -2
  194. torch_geometric/testing/decorators.py +53 -20
  195. torch_geometric/testing/feature_store.py +1 -1
  196. torch_geometric/transforms/__init__.py +2 -0
  197. torch_geometric/transforms/add_metapaths.py +5 -5
  198. torch_geometric/transforms/add_positional_encoding.py +1 -1
  199. torch_geometric/transforms/delaunay.py +65 -14
  200. torch_geometric/transforms/face_to_edge.py +32 -3
  201. torch_geometric/transforms/gdc.py +7 -6
  202. torch_geometric/transforms/laplacian_lambda_max.py +3 -3
  203. torch_geometric/transforms/mask.py +5 -1
  204. torch_geometric/transforms/node_property_split.py +1 -2
  205. torch_geometric/transforms/pad.py +7 -6
  206. torch_geometric/transforms/random_link_split.py +1 -1
  207. torch_geometric/transforms/remove_self_loops.py +36 -0
  208. torch_geometric/transforms/svd_feature_reduction.py +1 -1
  209. torch_geometric/transforms/to_sparse_tensor.py +1 -1
  210. torch_geometric/transforms/two_hop.py +1 -1
  211. torch_geometric/transforms/virtual_node.py +2 -1
  212. torch_geometric/typing.py +43 -6
  213. torch_geometric/utils/__init__.py +5 -1
  214. torch_geometric/utils/_negative_sampling.py +1 -1
  215. torch_geometric/utils/_normalize_edge_index.py +46 -0
  216. torch_geometric/utils/_scatter.py +38 -12
  217. torch_geometric/utils/_subgraph.py +4 -0
  218. torch_geometric/utils/_tree_decomposition.py +2 -2
  219. torch_geometric/utils/augmentation.py +1 -1
  220. torch_geometric/utils/convert.py +12 -8
  221. torch_geometric/utils/geodesic.py +24 -22
  222. torch_geometric/utils/hetero.py +1 -1
  223. torch_geometric/utils/map.py +8 -2
  224. torch_geometric/utils/smiles.py +65 -27
  225. torch_geometric/utils/sparse.py +39 -25
  226. torch_geometric/visualization/graph.py +3 -4
@@ -99,7 +99,7 @@ class HGBDataset(InMemoryDataset):
99
99
  # node_types = {0: 'paper', 1, 'author', ...}
100
100
  # edge_types = {0: ('paper', 'cite', 'paper'), ...}
101
101
  if self.name in ['acm', 'dblp', 'imdb']:
102
- with open(self.raw_paths[0], 'r') as f: # `info.dat`
102
+ with open(self.raw_paths[0]) as f: # `info.dat`
103
103
  info = json.load(f)
104
104
  n_types = info['node.dat']['node type']
105
105
  n_types = {int(k): v for k, v in n_types.items()}
@@ -112,7 +112,7 @@ class HGBDataset(InMemoryDataset):
112
112
  e_types[key] = (src, rel, dst)
113
113
  num_classes = len(info['label.dat']['node type']['0'])
114
114
  elif self.name in ['freebase']:
115
- with open(self.raw_paths[0], 'r') as f: # `info.dat`
115
+ with open(self.raw_paths[0]) as f: # `info.dat`
116
116
  info = f.read().split('\n')
117
117
  start = info.index('TYPE\tMEANING') + 1
118
118
  end = info[start:].index('')
@@ -124,7 +124,7 @@ class HGBDataset(InMemoryDataset):
124
124
  end = info[start:].index('')
125
125
  for key, row in enumerate(info[start:start + end]):
126
126
  row = row.split('\t')[1:]
127
- src, dst, rel = [v for v in row if v != '']
127
+ src, dst, rel = (v for v in row if v != '')
128
128
  src, dst = n_types[int(src)], n_types[int(dst)]
129
129
  rel = rel.split('-')[1]
130
130
  e_types[key] = (src, rel, dst)
@@ -134,8 +134,8 @@ class HGBDataset(InMemoryDataset):
134
134
  # Extract node information:
135
135
  mapping_dict = {} # Maps global node indices to local ones.
136
136
  x_dict = defaultdict(list)
137
- num_nodes_dict: Dict[str, int] = defaultdict(lambda: 0)
138
- with open(self.raw_paths[1], 'r') as f: # `node.dat`
137
+ num_nodes_dict: Dict[str, int] = defaultdict(int)
138
+ with open(self.raw_paths[1]) as f: # `node.dat`
139
139
  xs = [v.split('\t') for v in f.read().split('\n')[:-1]]
140
140
  for x in xs:
141
141
  n_id, n_type = int(x[0]), n_types[int(x[2])]
@@ -151,7 +151,7 @@ class HGBDataset(InMemoryDataset):
151
151
 
152
152
  edge_index_dict = defaultdict(list)
153
153
  edge_weight_dict = defaultdict(list)
154
- with open(self.raw_paths[2], 'r') as f: # `link.dat`
154
+ with open(self.raw_paths[2]) as f: # `link.dat`
155
155
  edges = [v.split('\t') for v in f.read().split('\n')[:-1]]
156
156
  for src, dst, rel, weight in edges:
157
157
  e_type = e_types[int(rel)]
@@ -168,9 +168,9 @@ class HGBDataset(InMemoryDataset):
168
168
 
169
169
  # Node classification:
170
170
  if self.name in ['acm', 'dblp', 'freebase', 'imdb']:
171
- with open(self.raw_paths[3], 'r') as f: # `label.dat`
171
+ with open(self.raw_paths[3]) as f: # `label.dat`
172
172
  train_ys = [v.split('\t') for v in f.read().split('\n')[:-1]]
173
- with open(self.raw_paths[4], 'r') as f: # `label.dat.test`
173
+ with open(self.raw_paths[4]) as f: # `label.dat.test`
174
174
  test_ys = [v.split('\t') for v in f.read().split('\n')[:-1]]
175
175
  for y in train_ys:
176
176
  n_id, n_type = mapping_dict[int(y[0])], n_types[int(y[2])]
@@ -4,7 +4,6 @@ from itertools import product
4
4
  from typing import Callable, List, Optional
5
5
 
6
6
  import numpy as np
7
- import scipy.sparse as sp
8
7
  import torch
9
8
 
10
9
  from torch_geometric.data import (
@@ -69,6 +68,8 @@ class IMDB(InMemoryDataset):
69
68
  os.remove(path)
70
69
 
71
70
  def process(self) -> None:
71
+ import scipy.sparse as sp
72
+
72
73
  data = HeteroData()
73
74
 
74
75
  node_types = ['movie', 'director', 'actor']
@@ -8,8 +8,9 @@ from torch_geometric.data import Data, InMemoryDataset
8
8
  class KarateClub(InMemoryDataset):
9
9
  r"""Zachary's karate club network from the `"An Information Flow Model for
10
10
  Conflict and Fission in Small Groups"
11
- <http://www1.ind.ku.dk/complexLearning/zachary1977.pdf>`_ paper, containing
12
- 34 nodes, connected by 156 (undirected and unweighted) edges.
11
+ <https://www.journals.uchicago.edu/doi/abs/10.1086/jar.33.4.3629752>`_
12
+ paper, containing 34 nodes,
13
+ connected by 156 (undirected and unweighted) edges.
13
14
  Every node is labeled by one of four classes obtained via modularity-based
14
15
  clustering, following the `"Semi-supervised Classification with Graph
15
16
  Convolutional Networks" <https://arxiv.org/abs/1609.02907>`_ paper.
@@ -4,7 +4,6 @@ from itertools import product
4
4
  from typing import Callable, List, Optional
5
5
 
6
6
  import numpy as np
7
- import scipy.sparse as sp
8
7
  import torch
9
8
 
10
9
  from torch_geometric.data import (
@@ -68,6 +67,8 @@ class LastFM(InMemoryDataset):
68
67
  os.remove(path)
69
68
 
70
69
  def process(self) -> None:
70
+ import scipy.sparse as sp
71
+
71
72
  data = HeteroData()
72
73
 
73
74
  node_type_idx = np.load(osp.join(self.raw_dir, 'node_types.npy'))
@@ -5,6 +5,7 @@ import numpy as np
5
5
  import torch
6
6
 
7
7
  from torch_geometric.data import Data, InMemoryDataset, download_url
8
+ from torch_geometric.io import fs
8
9
  from torch_geometric.utils import one_hot
9
10
 
10
11
 
@@ -115,9 +116,9 @@ class LINKXDataset(InMemoryDataset):
115
116
 
116
117
  def _process_wiki(self) -> Data:
117
118
  paths = {x.split('/')[-1]: x for x in self.raw_paths}
118
- x = torch.load(paths['wiki_features2M.pt'])
119
- edge_index = torch.load(paths['wiki_edges2M.pt']).t().contiguous()
120
- y = torch.load(paths['wiki_views2M.pt'])
119
+ x = fs.torch_load(paths['wiki_features2M.pt'])
120
+ edge_index = fs.torch_load(paths['wiki_edges2M.pt']).t().contiguous()
121
+ y = fs.torch_load(paths['wiki_views2M.pt'])
121
122
 
122
123
  return Data(x=x, edge_index=edge_index, y=y)
123
124
 
@@ -188,9 +188,8 @@ class LRGBDataset(InMemoryDataset):
188
188
  graphs = pickle.load(f)
189
189
  elif self.name.split('-')[0] == 'peptides':
190
190
  # Peptides-func and Peptides-struct
191
- with open(osp.join(self.raw_dir, f'{split}.pt'),
192
- 'rb') as f:
193
- graphs = torch.load(f)
191
+ graphs = fs.torch_load(
192
+ osp.join(self.raw_dir, f'{split}.pt'))
194
193
 
195
194
  data_list = []
196
195
  for graph in tqdm(graphs, desc=f'Processing {split} dataset'):
@@ -260,8 +259,7 @@ class LRGBDataset(InMemoryDataset):
260
259
 
261
260
  def process_pcqm_contact(self) -> None:
262
261
  for split in ['train', 'val', 'test']:
263
- with open(osp.join(self.raw_dir, f'{split}.pt'), 'rb') as f:
264
- graphs = torch.load(f)
262
+ graphs = fs.torch_load(osp.join(self.raw_dir, f'{split}.pt'))
265
263
 
266
264
  data_list = []
267
265
  for graph in tqdm(graphs, desc=f'Processing {split} dataset'):
@@ -11,6 +11,7 @@ from torch_geometric.data import (
11
11
  extract_tar,
12
12
  extract_zip,
13
13
  )
14
+ from torch_geometric.io import fs
14
15
 
15
16
 
16
17
  class MalNetTiny(InMemoryDataset):
@@ -65,7 +66,7 @@ class MalNetTiny(InMemoryDataset):
65
66
  self.load(self.processed_paths[0])
66
67
 
67
68
  if split is not None:
68
- split_slices = torch.load(self.processed_paths[1])
69
+ split_slices = fs.torch_load(self.processed_paths[1])
69
70
  if split == 'train':
70
71
  self._indices = range(split_slices[0], split_slices[1])
71
72
  elif split == 'val':
@@ -98,7 +99,7 @@ class MalNetTiny(InMemoryDataset):
98
99
  split_slices = [0]
99
100
 
100
101
  for split in ['train', 'val', 'test']:
101
- with open(osp.join(self.raw_paths[1], f'{split}.txt'), 'r') as f:
102
+ with open(osp.join(self.raw_paths[1], f'{split}.txt')) as f:
102
103
  filenames = f.read().split('\n')[:-1]
103
104
  split_slices.append(split_slices[-1] + len(filenames))
104
105
 
@@ -107,7 +108,7 @@ class MalNetTiny(InMemoryDataset):
107
108
  malware_type = filename.split('/')[0]
108
109
  y = y_map.setdefault(malware_type, len(y_map))
109
110
 
110
- with open(path, 'r') as f:
111
+ with open(path) as f:
111
112
  edges = f.read().split('\n')[5:-1]
112
113
 
113
114
  edge_indices = [[int(s) for s in e.split()] for e in edges]
@@ -1,14 +1,13 @@
1
1
  import os
2
2
  from typing import Callable, List, Optional
3
3
 
4
- import torch
5
-
6
4
  from torch_geometric.data import (
7
5
  Data,
8
6
  InMemoryDataset,
9
7
  download_url,
10
8
  extract_zip,
11
9
  )
10
+ from torch_geometric.io import fs
12
11
 
13
12
 
14
13
  class MNISTSuperpixels(InMemoryDataset):
@@ -85,7 +84,7 @@ class MNISTSuperpixels(InMemoryDataset):
85
84
  os.unlink(path)
86
85
 
87
86
  def process(self) -> None:
88
- inputs = torch.load(self.raw_paths[0])
87
+ inputs = fs.torch_load(self.raw_paths[0])
89
88
  for i in range(len(inputs)):
90
89
  data_list = [Data(**data_dict) for data_dict in inputs[i]]
91
90